Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise A, Question 1

Question:

A curve is given by the parametric equations $x=2 t^{2}, y=4 t . t \in \mathbb{R}$. Copy and complete the following table and draw a graph of the curve for $-4 \leq t \leq 4$.

t	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	4
$\boldsymbol{x}=\mathbf{2 \boldsymbol { t } ^ { 2 }}$	32					0	0.5				32
$\boldsymbol{y}=\mathbf{4} \boldsymbol{t}$	-16						2				16

Solution:

t	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	4
$x=2 t^{2}$	32	18	8	2	0.5	0	0.5	2	8	18	32
$y=4 t$	-16	-12	-8	-4	-2	0	2	4	8	12	16

[^0]
Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations
Exercise A, Question 2

Question:

A curve is given by the parametric equations $x=3 t^{2}, y=6 t . t \in \mathbb{R}$. Copy and complete the following table and draw a graph of the curve for $-3 \leq t \leq 3$.

t	-3	-2	-1	-0.5	0	0.5	1	2	3
$\boldsymbol{x}=\mathbf{3} \boldsymbol{t}^{2}$					0				
$\boldsymbol{y}=\mathbf{6} \boldsymbol{t}$					0				

Solution:

t	-3	-2	-1	-0.5	0	0.5	1	2	3
$x=3 t^{2}$	27	12	3	0.75	0	0.75	3	12	27
$y=6 t$	-18	-12	-6	-3	0	3	6	12	18

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations
Exercise A, Question 3

Question:

A curve is given by the parametric equations $x=4 t, y=\frac{4}{t}, t \in \mathbb{R}, \mathrm{t} \neq 0$. Copy and complete the following table and draw a graph of the curve for $-4 \leq t \leq 4$.

t	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
$\boldsymbol{x}=\mathbf{4} \boldsymbol{t}$	-16				-2					
$\boldsymbol{y}=\frac{\mathbf{4}}{\boldsymbol{t}}$	-1				-8					

Solution:

t	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
$x=4 t$	-16	-12	-8	-4	-2	2	4	8	12	16
$y=\frac{4}{t}$	-1	$-\frac{4}{3}$	-2	-4	-8	8	4	2	$\frac{4}{3}$	1

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations
Exercise A, Question 4

Question:

Find the Cartesian equation of the curves given by these parametric equations.
a $x=5 t^{2}, y=10 t$
b $x=\frac{1}{2} t^{2}, y=t$
c $x=50 t^{2}, y=100 t$
d $x=\frac{1}{5} t^{2}, \quad y=\frac{2}{5} t$
e $x=\frac{5}{2} t^{2}, y=5 t$
f $x=\sqrt{3} t^{2}, y=2 \sqrt{3} t$
g $x=4 t, \quad y=2 t^{2}$
h $x=6 t, y=3 t^{2}$

Solution:

a $\quad y=10 t$
So $\quad t=\frac{y}{10}$

$$
\begin{equation*}
x=5 t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
x=5\left(\frac{y}{10}\right)^{2}
$$

So $x=\frac{5 y^{2}}{100}$ simplifies to $x=\frac{y^{2}}{20}$
Hence, the Cartesian equation is $y^{2}=20 x$.
b $\quad y=t$

$$
\begin{equation*}
x=\frac{1}{2} t^{2} \tag{1}
\end{equation*}
$$

Substitute (1) into (2):

$$
x=\frac{1}{2} y^{2}
$$

Hence, the Cartesian equation is $y^{2}=2 x$.
c $y=100 t$

So $\quad t=\frac{y}{100}$
$x=50 t^{2}$

Substitute (1) into (2):

$$
x=50\left(\frac{y}{100}\right)^{2}
$$

So $x=\frac{50 y^{2}}{10000}$ simplifies to $x=\frac{y^{2}}{200}$
Hence, the Cartesian equation is $y^{2}=200 x$.
d $\quad y=\frac{2}{5} t$
So $\quad t=\frac{5 y}{2}$

$$
\begin{equation*}
x=\frac{1}{5} t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
x=\frac{1}{5}\left(\frac{5 y}{2}\right)^{2}
$$

So $x=\frac{25 y^{2}}{20}$ simplifies to $x=\frac{5 y^{2}}{4}$
Hence, the Cartesian equation is $y^{2}=\frac{4}{5} x$.
e $y=5 t$
So $\quad t=\frac{y}{5}$

$$
\begin{equation*}
x=\frac{5}{2} t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
x=\frac{5}{2}\left(\frac{y}{5}\right)^{2}
$$

So $\quad x=\frac{5 y^{2}}{50}$ simplifies to $x=\frac{y^{2}}{10}$
Hence, the Cartesian equation is $y^{2}=10 x$.
f $y=2 \sqrt{3} t$
So $\quad t=\frac{y}{2 \sqrt{3}}$

$$
\begin{equation*}
x=\sqrt{3} t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
x=\sqrt{3}\left(\frac{y}{2 \sqrt{3}}\right)^{2}
$$

So $\quad x=\frac{\sqrt{3} y^{2}}{12}$ gives $y=\frac{12 x}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

Hence, the Cartesian equation is $y^{2}=4 \sqrt{3} x$.
g $\quad x=4 t$

So $\quad t=\frac{x}{4}$

$$
\begin{equation*}
y=2 t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
y=2\left(\frac{x}{4}\right)^{2}
$$

So $\quad y=\frac{2 x^{2}}{16}$ simplifies to $y=\frac{x^{2}}{8}$

Hence, the Cartesian equation is $x^{2}=8 y$.
h $x=6 t$
So $\quad t=\frac{x}{6}$

$$
\begin{equation*}
y=3 t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
y=3\left(\frac{x}{6}\right)^{2}
$$

So $\quad y=\frac{3 x^{2}}{36}$ simplifies to $y=\frac{x^{2}}{12}$
Hence, the Cartesian equation is $x^{2}=12 y$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations
Exercise A, Question 5

Question:

Find the Cartesian equation of the curves given by these parametric equations.
a $x=t, y=\frac{1}{t}, \quad t \neq 0$
b $x=7 t, y=\frac{7}{t}, t \neq 0$
c $x=3 \sqrt{5} t, y=\frac{3 \sqrt{5}}{t}, t \neq 0$
$\mathbf{d} x=\frac{t}{5}, \quad y=\frac{1}{5 t}, \quad t \neq 0$

Solution:

a $\quad x y=t \times\left(\frac{1}{t}\right)$

$$
x y=\frac{t}{t}
$$

Hence, the Cartesian equation is $x y=1$.
b $\quad x y=7 t \times\left(\frac{7}{t}\right)$

$$
x y=\frac{49 t}{t}
$$

Hence, the Cartesian equation is $x y=49$.
c $\quad x y=3 \sqrt{5} t \times\left(\frac{3 \sqrt{5}}{t}\right)$

$$
x y=\frac{9(5) t}{t}
$$

Hence, the Cartesian equation is $x y=45$.
d $\quad x y=\frac{t}{5} \times\left(\frac{1}{5 t}\right)$

$$
x y=\frac{t}{25 t}
$$

Hence, the Cartesian equation is $x y=\frac{1}{25}$.

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise A, Question 6

Question:

A curve has parametric equations $x=3 t, y=\frac{3}{t}, t \in \mathbb{R}, \mathrm{t} \neq 0$.
a Find the Cartesian equation of the curve.
b Hence sketch this curve.

Solution:

a $\quad x y=3 t \times\left(\frac{3}{t}\right)$

$$
x y=\frac{9 t}{t}
$$

Hence, the Cartesian equation is $x y=9$.
b

© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise A, Question 7

Question:

A curve has parametric equations $x=\sqrt{2} t, y=\frac{\sqrt{2}}{t}, t \in \mathbb{R}, \mathrm{t} \neq 0$.
a Find the Cartesian equation of the curve.
b Hence sketch this curve.

Solution:

a $\quad x y=\sqrt{2} t \times\left(\frac{\sqrt{2}}{t}\right)$

$$
x y=\frac{2 t}{t}
$$

Hence, the Cartesian equation is $x y=2$.
b

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise B, Question 1

Question:

Find an equation of the parabola with
a focus $(5,0)$ and directrix $x+5=0$,
b focus $(8,0)$ and directrix $x+8=0$,
\mathbf{c} focus $(1,0)$ and directrix $x=-1$,
\mathbf{d} focus $\left(\frac{3}{2}, 0\right)$ and directrix $x=-\frac{3}{2}$,
$\mathbf{e} \operatorname{focus}\left(\frac{\sqrt{3}}{2}, 0\right)$ and directrix $x+\frac{\sqrt{3}}{2}=0$.

Solution:

The focus and directrix of a parabola with equation $y^{2}=4 a x$, are $(a, 0)$ and $x+a=0$ respectively.
a focus $(5,0)$ and directrix $x+5=0$.
So $a=5$ and $y^{2}=4(5) x$.

Hence parabola has equation $y^{2}=20 x$.
b focus $(8,0)$ and directrix $x+8=0$.
So $a=8$ and $y^{2}=4(8) x$.

Hence parabola has equation $y^{2}=32 x$.
\mathbf{c} focus $(1,0)$ and directrix $x=-1$ giving $x+1=0$.
So $a=1$ and $y^{2}=4(1) x$.

Hence parabola has equation $y^{2}=4 x$.
\mathbf{d} focus $\left(\frac{3}{2}, 0\right)$ and directrix $x=-\frac{3}{2}$ giving $x+\frac{3}{2}=0$.

So $a=\frac{3}{2}$ and $y^{2}=4\left(\frac{3}{2}\right) x$.

Hence parabola has equation $y^{2}=6 x$.
\mathbf{e} focus $\left(\frac{\sqrt{3}}{2}, 0\right)$ and directrix $x+\frac{\sqrt{3}}{2}=0$.

So $a=\frac{\sqrt{3}}{2}$ and $y^{2}=4\left(\frac{\sqrt{3}}{2}\right) x$.

Hence parabola has equation $y^{2}=2 \sqrt{3} x$.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise B, Question 2

Question:

Find the coordinates of the focus, and an equation for the directrix of a parabola with these equations.
a $y^{2}=12 x$
b $y^{2}=20 x$
c $y^{2}=10 x$
d $y^{2}=4 \sqrt{3} x$
e $y^{2}=\sqrt{2} x$
f $y^{2}=5 \sqrt{2} x$

Solution:

The focus and directrix of a parabola with equation $y^{2}=4 a x$, are $(a, 0)$ and $x+a=0$ respectively.
a $y^{2}=12 x$. So $4 a=12$, gives $a=\frac{12}{4}=3$.
So the focus has coordinates $(3,0)$ and the directrix has equation $x+3=0$.
b $y^{2}=20 x$. So $4 a=20$, gives $a=\frac{20}{4}=5$.
So the focus has coordinates $(5,0)$ and the directrix has equation $x+5=0$.
c $y^{2}=10 x$. So $4 a=10$, gives $a=\frac{10}{4}=\frac{5}{2}$.
So the focus has coordinates $\left(\frac{5}{2}, 0\right)$ and the directrix has equation $x+\frac{5}{2}=0$.
d $y^{2}=4 \sqrt{3} x$. So $4 a=4 \sqrt{3}$, gives $a=\frac{4 \sqrt{3}}{4}=\sqrt{3}$.
So the focus has coordinates $(\sqrt{3}, 0)$ and the directrix has equation $x+\sqrt{3}=0$.
e $y^{2}=\sqrt{2} x$. So $4 a=\sqrt{2}$, gives $a=\frac{\sqrt{2}}{4}$.
So the focus has coordinates $\left(\frac{\sqrt{2}}{4}, 0\right)$ and the directrix has equation $x+\frac{\sqrt{2}}{4}=0$.
f $y^{2}=5 \sqrt{2} x$. So $4 a=5 \sqrt{2}$, gives $a=\frac{5 \sqrt{2}}{4}$.
So the focus has coordinates $\left(\frac{5 \sqrt{2}}{4}, 0\right)$ and the directrix has equation $x+\frac{5 \sqrt{2}}{4}=0$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise B, Question 3

Question:

A point $P(x, y)$ obeys a rule such that the distance of P to the point $(3,0)$ is the same as the distance of P to the straight line $x+3=0$. Prove that the locus of P has an equation of the form $y^{2}=4 a x$, stating the value of the constant a.

Solution:

$$
x+3=0
$$

From sketch the locus satisfies $S P=X P$.
Therefore, $S P^{2}=X P^{2}$.
So, $(x-3)^{2}+(y-0)^{2}=(x--3)^{2}$.
$x^{2}-6 x+9+y^{2}=x^{2}+6 x+9$
$-6 x+y^{2}=6 x$
which simplifies to $y^{2}=12 x$.
So, the locus of P has an equation of the form $y^{2}=4 a x$, where $a=3$.
© Pearson Education Ltd 2008

The (shortest) distance of P to the line $x+3=0$ is the distance $X P$.

The distance $S P$ is the same as the distance $X P$.

The line $X P$ is horizontal and has distance $X P=x+3$.

The locus of P is the curve shown.

This means the distance $S P$ is the same as the distance $X P$.

Use $\mathrm{d}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$ on $S P^{2}=X P^{2}$, where $S(3,0), P(x, y)$, and $X(-3, y)$.

This is in the form $y^{2}=4 a x$.
So $4 a=12$, gives $a=\frac{12}{4}=3$.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise B, Question 4

Question:

A point $P(x, y)$ obeys a rule such that the distance of P to the point $(2 \sqrt{5}, 0)$ is the same as the distance of P to the straight line $x=-2 \sqrt{5}$. Prove that the locus of P has an equation of the form $y^{2}=4 a x$, stating the value of the constant a.

Solution:

$$
x=-2 \sqrt{5}
$$

From sketch the locus satisfies $S P=X P$.

Therefore, $S P^{2}=X P^{2}$.
So, $(x-2 \sqrt{5})^{2}+(y-0)^{2}=(x--2 \sqrt{5})^{2}$.
$x^{2}-4 \sqrt{5} x+20+y^{2}=x^{2}+4 \sqrt{5} x+20$

$$
-4 \sqrt{5} x+y^{2}=4 \sqrt{5} x
$$

which simplifies to $y^{2}=8 \sqrt{5} x$.
So, the locus of P has an equation of the form $y^{2}=4 a x$, where $a=2 \sqrt{5}$.
© Pearson Education Ltd 2008

The (shortest) distance of P to the line $x=-2 \sqrt{5}$ or $x+2 \sqrt{5}=0$ is the distance $X P$.

The distance $S P$ is the same as the distance $X P$.

The line $X P$ is horizontal and has distance $X P=x+2 \sqrt{5}$.

The locus of P is the curve shown.

This means the distance $S P$ is the same as the distance $X P$.

Use $\mathrm{d}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$ on $S P^{2}=X P^{2}$, where $S(2 \sqrt{5}, 0), P(x, y)$, and $X(-2 \sqrt{5}, y)$.

This is in the form $y^{2}=4 a x$.
So $4 a=8 \sqrt{5}$, gives $a=\frac{8 \sqrt{5}}{4}=2 \sqrt{5}$.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise B, Question 5

Question:

A point $P(x, y)$ obeys a rule such that the distance of P to the point $(0,2)$ is the same as the distance of P to the straight line $y=-2$.
a Prove that the locus of P has an equation of the form $y=k x^{2}$, stating the value of the constant k.

Given that the locus of P is a parabola,
b state the coordinates of the focus of P, and an equation of the directrix to P,
c sketch the locus of P with its focus and its directrix.

Solution:

a
The (shortest) distance of P to the line $y=-2$ is the distance $Y P$.

From sketch the locus satisfies $S P=Y P$.

Therefore, $S P^{2}=Y P^{2}$.
So, $(x-0)^{2}+(y-2)^{2}=(y--2)^{2}$.
This means the distance $S P$ is the same as the distance $Y P$.
The line $Y P$ is vertical and has distance $Y P=y+2$.

The locus of P is the curve shown.

$$
\begin{gathered}
x^{2}+y^{2}-4 y+4=y^{2}+4 y+4 \\
x^{2}-4 y=4 y
\end{gathered}
$$

which simplifies to $x^{2}=8 y$ and then $y=\frac{1}{8} x^{2}$.
So, the locus of P has an equation of the form $y=\frac{1}{8} x^{2}$, where
$k=\frac{1}{8}$.
b The focus and directrix of a parabola with equation $y^{2}=4 a x$, are $(a, 0)$ and $x+a=0$ respectively. Therefore it follows that the focus and directrix of a parabola with equation $x^{2}=4 a y$, are $(0, a)$ and $y+a=0$ respectively.
So the focus has coordinates $(0,2)$ and the directrix has equation $x^{2}=8 y$ is in the form $x^{2}=4 a y$. $y+2=0$.

So $4 a=8$, gives $a=\frac{8}{4}=2$.
c

© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations
Exercise C, Question 1

Question:

The line $y=2 x-3$ meets the parabola $y^{2}=3 x$ at the points P and Q.
Find the coordinates of P and Q.

Solution:

Line: $\quad y=2 x-3$ (1)

Curve: $y^{2}=3 x$ (2)

Substituting (1) into (2) gives
$(2 x-3)^{2}=3 x$
$(2 x-3)(2 x-3)=3 x$
$4 x^{2}-12 x+9=3 x$
$4 x^{2}-15 x+9=0$
$(x-3)(4 x-3)=0$
$x=3, \frac{3}{4}$

When $x=3, y=2(3)-3=3$

When $x=\frac{3}{4}, y=2\left(\frac{3}{4}\right)-3=-\frac{3}{2}$
Hence the coordinates of P and Q are $(3,3)$ and $\left(\frac{3}{4},-\frac{3}{2}\right)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 2

Question:

The line $y=x+6$ meets the parabola $y^{2}=32 x$ at the points A and B. Find the exact length $A B$ giving your answer as a surd in its simplest form.

Solution:

Line: $\quad y=x+6$

Curve: $y^{2}=32 x$

Substituting (1) into (2) gives
$(x+6)^{2}=32 x$
$(x+6)(x+6)=32 x$
$x^{2}+12 x+36=32 x$
$x^{2}-20 x+36=0$
$(x-2)(x-18)=0$
$x=2,18$

When $x=2, y=2+6=8$.

When $x=18, y=18+6=24$.

Hence the coordinates of A and B are $(2,8)$ and $(18,24)$.

$$
\begin{aligned}
A B & =\sqrt{(18-2)^{2}+(24-8)^{2}} \text { Use } \mathrm{d}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} . \\
& =\sqrt{16^{2}+16^{2}} \\
& =\sqrt{2(16)^{2}} \\
& =16 \sqrt{2}
\end{aligned}
$$

Hence the exact length $A B$ is $16 \sqrt{2}$.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 3

Question:

The line $y=x-20$ meets the parabola $y^{2}=10 x$ at the points A and B. Find the coordinates of A and B. The mid-point of $A B$ is the point M. Find the coordinates of M.

Solution:

Line: $\quad y=x-20$

Curve: $\quad y^{2}=10 x$

Substituting (1) into (2) gives
$(x-20)^{2}=10 x$
$(x-20)(x-20)=10 x$
$x^{2}-40 x+400=10 x$
$x^{2}-50 x+400=0$
$(x-10)(x-40)=0$
$x=10,40$

When $x=10, y=10-20=-10$.

When $x=40, y=40-20=20$.

Hence the coordinates of A and B are $(10,-10)$ and $(40,20)$.
The midpoint of A and B is $\left(\frac{10+40}{2}, \frac{-10+20}{2}\right)=(25,5)$. Use $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Hence the coordinates of M are $(25,5)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 4

Question:

The parabola C has parametric equations $x=6 t^{2}, y=12 t$. The focus to C is at the point S.
a Find a Cartesian equation of C.
b State the coordinates of S and the equation of the directrix to C.
c Sketch the graph of C.
The points P and Q are both at a distance 9 units away from the directrix of the parabola.
d State the distance PS.
e Find the exact length $P Q$, giving your answer as a surd in its simplest form.
f Find the area of the triangle $P Q S$, giving your answer in the form $k \sqrt{2}$, where k is an integer.

Solution:

a $\quad y=12 t$
So $\quad t=\frac{y}{12}$
$x=6 t^{2}$

Substitute (1) into (2):

$$
x=6\left(\frac{y}{12}\right)^{2}
$$

So $\quad x=\frac{6 y^{2}}{144}$ simplifies to $x=\frac{y^{2}}{24}$
Hence, the Cartesian equation is $y^{2}=24 x$.
b $y^{2}=24 x$. So $4 a=24$, gives $a=\frac{24}{4}=6$.

So the focus S, has coordinates $(6,0)$ and the directrix has equation $x+6=0$.
c

d

The (shortest) distance of P to the line $x+6=0$ is the distance $X_{1} P$.

Therefore $X_{1} P=9$.
The distance $P S$ is the same as the distance $X_{1} P$, by the focus-directrix property.

Hence the distance $P S=9$.
e Using diagram in (d), the x-coordinate of P and Q is $x=9-6=3$.

When $x=3, y^{2}=24(3)=72$.

Hence $y= \pm \sqrt{72}$

$$
\begin{aligned}
& = \pm \sqrt{36} \sqrt{2} \\
& = \pm 6 \sqrt{2}
\end{aligned}
$$

So the coordinates are of P and Q are $(3,6 \sqrt{2})$ and $(3,-6 \sqrt{2})$.
As P and Q are vertically above each other then

$$
\begin{aligned}
P Q & =6 \sqrt{2}--6 \sqrt{2} \\
& =12 \sqrt{2} .
\end{aligned}
$$

Hence, the distance $P Q$ is $12 \sqrt{2}$.
f Drawing a diagram of the triangle $P Q S$ gives:
The x-coordinate of P and Q is 3 and the x coordinate of S is 6 .

Hence the height of the triangle is height $=6-3=3$.
The length of the base is $12 \sqrt{2}$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(12 \sqrt{2})(3) \\
& =\frac{1}{2}(36 \sqrt{2}) \\
& =18 \sqrt{2} .
\end{aligned}
$$

Therefore the area of the triangle is $18 \sqrt{2}$, where $k=18$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 5

Question:

The parabola C has equation $y^{2}=4 a x$, where a is a constant. The point $\left(\frac{5}{4} t^{2}, \frac{5}{2} t\right)$ is a general point on C.
a Find a Cartesian equation of C.

The point P lies on C with y-coordinate 5 .
b Find the x-coordinate of P.

The point Q lies on the directrix of C where $y=3$. The line l passes through the points P and Q.
c Find the coordinates of Q.
d Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Solution:

a $P\left(\frac{5}{4} t^{2}, \frac{5}{2} t\right)$. Substituting $x=\frac{5}{4} t^{2}$ and $y=\frac{5}{2} t$ into $y^{2}=4 a x$ gives,
$\left(\frac{5}{2} t\right)^{2}=4 a\left(\frac{5}{4} t^{2}\right) \Rightarrow \frac{25 t^{2}}{4}=5 a t^{2} \Rightarrow \frac{25}{4}=5 a \Rightarrow \frac{5}{4}=a$
When $a=\frac{5}{4}, y^{2}=4\left(\frac{5}{4}\right) x \Rightarrow y^{2}=5 x$

The Cartesian equation of C is $y^{2}=5 x$.
b When $y=5,(5)^{2}=5 x \Rightarrow \frac{25}{5}=x \Rightarrow x=5$.

The x-coordinate of P is 5 .
c As $a=\frac{5}{4}$, the equation of the directrix of C is $x+\frac{5}{4}=0$ or $x=-\frac{5}{4}$.
Therefore the coordinates of Q are $\left(-\frac{5}{4}, 3\right)$.
d The coordinates of P and Q are $(5,5)$ and $\left(-\frac{5}{4}, 3\right)$.
$m_{l}=m_{P Q}=\frac{3-5}{-\frac{5}{4}-5}=\frac{-2}{-\frac{25}{4}}=\frac{8}{25}$
$l: y-5=\frac{8}{25}(x-5)$
$l: 25 y-125=8(x-5)$
$l: 25 y-125=8 x-40$
$l: 0=8 x-25 y-40+125$
$l: 0=8 x-25 y+85$

An equation for l is $8 x-25 y+85=0$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 6

Question:

A parabola C has equation $y^{2}=4 x$. The point S is the focus to C.
a Find the coordinates of S.

The point P with y-coordinate 4 lies on C.
b Find the x-coordinate of P.

The line l passes through S and P.
c Find an equation for l, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line l meets C again at the point Q.
d Find the coordinates of Q.
e Find the distance of the directrix of C to the point Q.

Solution:

a $y^{2}=4 x$. So $4 a=4$, gives $a=\frac{4}{4}=1$.

So the focus S, has coordinates $(1,0)$.

Also note that the directrix has equation $x+1=0$.
b Substituting $y=4$ into $y^{2}=4 x$ gives:
$16=4 x \Rightarrow x=\frac{16}{4}=4$.

The x-coordinate of P is 4 .
c The line l goes through $S(1,0)$ and $P(4,4)$.
Hence gradient of $l, m_{l}=\frac{4-0}{4-1}=\frac{4}{3}$

Hence, $y-0=\frac{4}{3}(x-1)$
$3 y=4(x-1)$
$3 y=4 x-4$
$0=4 x-3 y-4$

The line l has equation $4 x-3 y-4=0$.
d Line $l: 4 x-3 y-4=0$
Curve : $y^{2}=4 x$

Substituting (2) into (1) gives
$y^{2}-3 y-4=0$
$(y-4)(y+1)=0$
$y=4,-1$

At P, it is already known that $y=4$. So at $Q, y=-1$.

Substituting $y=-1$ into $y^{2}=4 x$ gives
$(-1)^{2}=4 x \Rightarrow x=\frac{1}{4}$.

Hence the coordinates of Q are $\left(\frac{1}{4},-1\right)$.
e The directrix of C has equation $x+1=0$ or $x=-1$. Q has coordinates $\left(\frac{1}{4},-1\right)$.

From the diagram, distance $=1+\frac{1}{4}=\frac{5}{4}$.
Therefore the distance of the directrix of C to the point Q is $\frac{5}{4}$.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 7

Question:

The diagram shows the point P which lies on the parabola C with equation $y^{2}=12 x$.

The point S is the focus of C. The points Q and R lie on the directrix to C. The line segment $Q P$ is parallel to the line segment $R S$ as shown in the diagram. The distance of $P S$ is 12 units.
a Find the coordinates of R and S.
b Hence find the exact coordinates of P and Q
c Find the area of the quadrilateral $P Q R S$, giving your answer in the form $k \sqrt{3}$, where k is an integer.

Solution:

a $y^{2}=12 x$. So $4 a=12$, gives $a=\frac{12}{4}=3$.

Therefore the focus S has coordinates $(3,0)$ and an equation of the directrix of C is $x+3=0$ or $x=-3$. The coordinates of R are $(-3,0)$ as R lies on the x-axis.
b The directrix has equation $x=-3$. The (shortest) distance of P to the directrix is the distance $P Q$. The distance $S P=12$. The focus-directrix property implies that $S P=P Q=12$.

Therefore the x-coordinate of P is $x=12-3=9$.
As P lies on C, when $x=9, y^{2}=12(9) \Rightarrow y^{2}=108$
As $y>0, y=\sqrt{108}=\sqrt{36} \sqrt{3}=6 \sqrt{3} \Rightarrow P(9,6 \sqrt{3})$
Hence the exact coordinates of P are $(9,6 \sqrt{3})$ and the coordinates of Q are $(-3,6 \sqrt{3})$.
c

$$
\begin{aligned}
\operatorname{Area}(P Q R S) & =\frac{1}{2}(6+12) 6 \sqrt{3} \\
& =\frac{1}{2}(18)(6 \sqrt{3}) \\
& =(9)(6 \sqrt{3}) \\
& =54 \sqrt{3}
\end{aligned}
$$

The area of the quadrilateral $P Q R S$ is $54 \sqrt{3}$ and $k=54$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise C, Question 8

Question:

The points $P(16,8)$ and $Q(4, b)$, where $b<0$ lie on the parabola C with equation $y^{2}=4 a x$.
a Find the values of a and b.
P and Q also lie on the line l. The mid-point of $P Q$ is the point R.
b Find an equation of l, giving your answer in the form $y=m x+c$, where m and c are constants to be determined.
c Find the coordinates of R.

The line n is perpendicular to l and passes through R.
d Find an equation of n, giving your answer in the form $y=m x+c$, where m and c are constants to be determined.
The line n meets the parabola C at two points.
e Show that the x-coordinates of these two points can be written in the form $x=\lambda \pm \mu \sqrt{13}$, where λ and μ are integers to be determined.

Solution:

a $P(16,8)$. Substituting $x=16$ and $y=8$ into $y^{2}=4 a x$ gives,
$(8)^{2}=4 a(16) \Rightarrow 64=64 a \Rightarrow a=\frac{64}{64}=1$.
$Q(4, b)$. Substituting $x=4, y=b$ and $a=1$ into $y^{2}=4 a x$ gives,
$b^{2}=4(1)(4)=16 \Rightarrow b= \pm \sqrt{16} \Rightarrow b= \pm 4$. As $b<0, b=-4$.

Hence, $a=1, b=-4$.
b The coordinates of P and Q are $(16,8)$ and $(4,-4)$.
$m_{l}=m_{P Q}=\frac{-4-8}{4-16}=\frac{-12}{-12}=1$
$l: y-8=1(x-16)$
$l: y=x-8$
l has equation $y=x-8$.
c R has coordinates $\left(\frac{16+4}{2}, \frac{8+-4}{2}\right)=(10,2)$.
d As n is perpendicular to $l, m_{n}=-1$
$n: y-2=-1(x-10)$
$n: y-2=-x+10$
$n: y=-x+12$
n has equation $y=-x+12$.
e Line $n: \quad y=-x+12$

Parabola $C: \quad y^{2}=4 x$

Substituting (1) into (2) gives

$$
\begin{aligned}
& (-x+12)^{2}=4 x \\
& x^{2}-12 x-12 x+144=4 x \\
& x^{2}-28 x+144=0 \\
& (x-14)^{2}-196+144=0 \\
& (x-14)^{2}-52=0 \\
& (x-14)^{2}=52 \\
& x-14= \pm \sqrt{52} \\
& x-14= \pm \sqrt{4} \sqrt{13} \\
& x-14= \pm 2 \sqrt{13} \\
& x=14 \pm 2 \sqrt{13}
\end{aligned}
$$

The x coordinates are $x=14 \pm 2 \sqrt{13}$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 1

Question:

Find the equation of the tangent to the curve
a $y^{2}=4 x$ at the point $(16,8)$
b $y^{2}=8 x$ at the point $(4,4 \sqrt{2})$
c $x y=25$ at the point $(5,5)$
d $x y=4$ at the point where $x=\frac{1}{2}$
e $y^{2}=7 x$ at the point $(7,-7)$
f $x y=16$ at the point where $x=2 \sqrt{2}$.
Give your answers in the form $a x+b y+c=0$.

Solution:

a As $y>0$ in the coordinates $(16,8)$, then
$y^{2}=4 x \Rightarrow y=\sqrt{4 x}=\sqrt{4} \sqrt{x}=2 x^{\frac{1}{2}}$
So $y=2 x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{x}}$
$\operatorname{At}(16,8), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{16}}=\frac{1}{4}$.
$\mathbf{T}: y-8=\frac{1}{4}(x-16)$
T: $4 y-32=x-16$

T: $0=x-4 y-16+32$

T: $x-4 y+16=0$
Therefore, the equation of the tangent is $x-4 y+16=0$.
b As $y>0$ in the coordinates $(4,4 \sqrt{2})$, then
$y^{2}=8 x \Rightarrow y=\sqrt{8 x}=\sqrt{8} \sqrt{x}=\sqrt{4} \sqrt{2} \sqrt{x}=2 \sqrt{2} x^{\frac{1}{2}}$

So $y=2 \sqrt{2} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{2}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{2} x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{2}}{\sqrt{x}}$
At $(4,4 \sqrt{2}), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{2}}{\sqrt{4}}=\frac{\sqrt{2}}{2}$.
$\mathbf{T}: y-4 \sqrt{2}=\frac{\sqrt{2}}{2}(x-4)$
T: $2 y-8 \sqrt{2}=\sqrt{2}(x-4)$
T: $2 y-8 \sqrt{2}=\sqrt{2} x-4 \sqrt{2}$
$\mathbf{T}: 0=\sqrt{2} x-2 y-4 \sqrt{2}+8 \sqrt{2}$
$\mathbf{T}: \sqrt{2} x-2 y+4 \sqrt{2}=0$
Therefore, the equation of the tangent is $\sqrt{2} x-2 y+4 \sqrt{2}=0$.
c $x y=25 \Rightarrow y=25 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-25 x^{-2}=-\frac{25}{x^{2}}$
$\operatorname{At}(5,5), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{25}{5^{2}}=-\frac{25}{25}=-1$
$\mathbf{T}: y-5=-1(x-5)$

T: $y-5=-x+5$
$\mathbf{T}: x+y-5-5=0$
$\mathbf{T}: x+y-10=0$

Therefore, the equation of the tangent is $x+y-10=0$.
d $x y=4 \Rightarrow y=4 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 x^{-2}=-\frac{4}{x^{2}}$
At $x=\frac{1}{2}, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{\left(\frac{1}{2}\right)^{2}}=-\frac{4}{\left(\frac{1}{4}\right)}=-16$

When $x=\frac{1}{2}, y=\frac{4}{\left(\frac{1}{2}\right)}=8 \Rightarrow\left(\frac{1}{2}, 8\right)$
$\mathbf{T}: y-8=-16\left(x-\frac{1}{2}\right)$

T: $y-8=-16 x+8$

T: $16 x+y-8-8=0$

T: $16 x+y-16=0$

Therefore, the equation of the tangent is $16 x+y-16=0$.
e As $y<0$ in the coordinates $(7,-7)$, then
$y^{2}=7 x \Rightarrow y=-\sqrt{7 x}=-\sqrt{7} \sqrt{x}=-\sqrt{7} x^{\frac{1}{2}}$
So $y=-\sqrt{7} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\sqrt{7}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=-\frac{\sqrt{7}}{2} x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\sqrt{7}}{2 \sqrt{x}}$
$\operatorname{At}(7,-7), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\sqrt{7}}{2 \sqrt{7}}=-\frac{1}{2}$.
$\mathbf{T}: y+7=-\frac{1}{2}(x-7)$
$\mathbf{T}: 2 y+14=-1(x-7)$
$\mathbf{T}: 2 y+14=-x+7$
$\mathbf{T}: x+2 y+14-7=0$
$\mathbf{T}: x+2 y+7=0$

Therefore, the equation of the tangent is $x+2 y+7=0$.
f $x y=16 \Rightarrow y=16 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-16 x^{-2}=-\frac{16}{x^{2}}$
At $x=2 \sqrt{2}, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{16}{(2 \sqrt{2})^{2}}=-\frac{16}{8}=-2$
When $x=2 \sqrt{2}, y=\frac{16}{2 \sqrt{2}}=\frac{8}{\sqrt{2}}=\frac{8 \sqrt{2}}{\sqrt{2} \sqrt{2}}=4 \sqrt{2} \Rightarrow(2 \sqrt{2}, 4 \sqrt{2})$
$\mathbf{T}: y-4 \sqrt{2}=-2(x-2 \sqrt{2})$
T: $y-4 \sqrt{2}=-2 x+4 \sqrt{2}$
T: $2 x+y-4 \sqrt{2}-4 \sqrt{2}=0$
$\mathbf{T}: 2 x+y-8 \sqrt{2}=0$

Therefore, the equation of the tangent is $2 x+y-8 \sqrt{2}=0$.

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 2

Question:

Find the equation of the normal to the curve
a $y^{2}=20 x$ at the point where $y=10$,
b $x y=9$ at the point $\left(-\frac{3}{2},-6\right)$.

Give your answers in the form $a x+b y+c=0$, where a, b and c are integers.

Solution:

a Substituting $y=10$ into $y^{2}=20 x$ gives
$(10)^{2}=20 x \Rightarrow x=\frac{100}{20}=5 \Rightarrow(5,10)$

As $y>0$, then
$y^{2}=20 x \Rightarrow y=\sqrt{20 x}=\sqrt{20} \sqrt{x}=\sqrt{4} \sqrt{5} \sqrt{x}=2 \sqrt{5} x^{\frac{1}{2}}$

So $y=2 \sqrt{5} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{5}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{5} x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{5}}{\sqrt{x}}$
At $(5,10), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{5}}{\sqrt{5}}=1$.

Gradient of tangent at $(5,10)$ is $m_{T}=1$.

So gradient of normal is $m_{N}=-1$.
$\mathbf{N}: y-10=-1(x-5)$
$\mathbf{N}: y-10=-x+5$
$\mathbf{N}: x+y-10-5=0$
$\mathbf{N}: x+y-15=0$

Therefore, the equation of the normal is $x+y-15=0$.
b $x y=9 \Rightarrow y=9 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-9 x^{-2}=-\frac{9}{x^{2}}$

At $x=-\frac{3}{2}, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{9}{\left(-\frac{3}{2}\right)^{2}}=-\frac{9}{\left(\frac{9}{4}\right)}=-\frac{36}{9}=-4$
Gradient of tangent at $\left(-\frac{3}{2},-6\right)$ is $m_{T}=-4$.
So gradient of normal is $m_{N}=\frac{-1}{-4}=\frac{1}{4}$.
$\mathbf{N}: y+6=\frac{1}{4}\left(x+\frac{3}{2}\right)$
$\mathbf{N}: 4 y+24=x+\frac{3}{2}$
$\mathbf{N}: 8 y+48=2 x+3$
$\mathbf{N}: 0=2 x-8 y+3-48$
$\mathbf{N}: 0=2 x-8 y-45$

Therefore, the equation of the normal is $2 x-8 y-45=0$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 3

Question:

The point $P(4,8)$ lies on the parabola with equation $y^{2}=4 a x$. Find
a the value of a,
b an equation of the normal to C at P.

The normal to C at P cuts the parabola again at the point Q. Find
c the coordinates of Q,
d the length $P Q$, giving your answer as a simplified surd.

Solution:

a Substituting $x=4$ and $y=8$ into $y^{2}=4 a x$ gives
$(8)^{2}=4(a)(4) \Rightarrow 64=16 a \Rightarrow a=\frac{64}{16}=4$

So, $a=4$.
b When $a=4, y^{2}=4(4) x \Rightarrow y^{2}=16 x$.

For $P(4,8), y>0$, so
$y^{2}=16 x \Rightarrow y=\sqrt{16 x}=\sqrt{16} \sqrt{x}=4 \sqrt{x}=4 x^{\frac{1}{2}}$
So $y=4 x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=4\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=2 x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}$
At $P(4,8), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{4}}=\frac{2}{2}=1$.

Gradient of tangent at $P(4,8)$ is $m_{T}=1$.

So gradient of normal at $P(4,8)$ is $m_{N}=-1$.
$\mathbf{N}: y-8=-1(x-4)$
$\mathbf{N}: y-8=-x+4$
$\mathbf{N}: y=-x+4+8$
$\mathbf{N}: y=-x+12$

Therefore, the equation of the normal to C at P is $y=-x+12$.
c Normal N: $\quad y=-x+12$
(1)

Parabola: $\quad y^{2}=16 x$

Multiplying (1) by 16 gives
$16 y=-16 x+192$

Substituting (2) into this equation gives
$16 y=-y^{2}+192$
$y^{2}+16 y-192=0$
$(y+24)(y-8)=0$
$y=-24,8$

At P, it is already known that $y=8$. So at $Q, y=-24$.

Substituting $y=-24$ into $y^{2}=16 x$ gives
$(-24)^{2}=16 x \Rightarrow 576=16 x \Rightarrow x=\frac{576}{16}=36$.
Hence the coordinates of Q are $(36,-24)$.
d The coordinates of P and Q are $(4,8)$ and $(36,-24)$.

$$
\begin{aligned}
A B & =\sqrt{(36-4)^{2}+(-24-8)^{2}} \text { Use } d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} . \\
& =\sqrt{32^{2}+(-32)^{2}} \\
& =\sqrt{2(32)^{2}} \\
& =\sqrt{2} \sqrt{(32)^{2}} \\
& =32 \sqrt{2}
\end{aligned}
$$

Hence the exact length $A B$ is $32 \sqrt{2}$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 4

Question:

The point $A(-2,-16)$ lies on the rectangular hyperbola H with equation $x y=32$.
a Find an equation of the normal to H at A.
The normal to H at A meets H again at the point B.
b Find the coordinates of B.

Solution:

a $x y=32 \Rightarrow y=32 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-32 x^{-2}=-\frac{32}{x^{2}}$

At $A(-2,-16), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{32}{2^{2}}=-\frac{32}{4}=-8$

Gradient of tangent at $A(-2,-16)$ is $m_{T}=-8$.

So gradient of normal at $A(-2,-16)$ is $m_{N}=\frac{-1}{-8}=\frac{1}{8}$.
$\mathbf{N}: y+16=\frac{1}{8}(x+2)$
$\mathbf{N}: 8 y+128=x+2$
$\mathbf{N}: 0=x-8 y+2-128$

N: $0=x-8 y-126$

The equation of the normal to H at A is $x-8 y-126=0$.
b Normal N: $x-8 y-126=0$
Hyperbola $H: \quad x y=32 \quad$ (2)

Rearranging (2) gives
$y=\frac{32}{x}$
Substituting this equation into (1) gives
$x-8\left(\frac{32}{x}\right)-126=0$
$x-\left(\frac{256}{x}\right)-126=0$

Multiplying both sides by x gives
$x^{2}-256-126 x=0$
$x^{2}-126 x-256=0$
$(x-128)(x+2)=0$
$x=128,-2$

At A, it is already known that $x=-2$. So at $B, x=128$.
Substituting $x=128$ into $y=\frac{32}{x}$ gives
$y=\frac{32}{128}=\frac{1}{4}$.

Hence the coordinates of B are $\left(128, \frac{1}{4}\right)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 5

Question:

The points $P(4,12)$ and $Q(-8,-6)$ lie on the rectangular hyperbola H with equation $x y=48$.
a Show that an equation of the line $P Q$ is $3 x-2 y+12=0$.
The point A lies on H. The normal to H at A is parallel to the chord $P Q$.
b Find the exact coordinates of the two possible positions of A.

Solution:

a The points P and Q have coordinates $P(4,12)$ and $Q(-8,-6)$.
Hence gradient of $P Q, m_{P Q}=\frac{-6-12}{-8-4}=\frac{-18}{-12}=\frac{3}{2}$
Hence, $y-12=\frac{3}{2}(x-4)$
$2 y-24=3(x-4)$
$2 y-24=3 x-12$

$$
0=3 x-2 y-12+24
$$

$$
0=3 x-2 y+12
$$

The line $P Q$ has equation $3 x-2 y+12=0$.
b From part (a), the gradient of the chord $P Q$ is $\frac{3}{2}$.
The normal to H at A is parallel to the chord $P Q$, implies that the gradient of the normal to H at A is $\frac{3}{2}$.

It follows that the gradient of the tangent to H at A is
$m_{T}=\frac{-1}{m_{N}}=\frac{-1}{\left(\frac{3}{2}\right)}=-\frac{2}{3}$
$H: x y=48 \Rightarrow y=48 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-48 x^{-2}=-\frac{48}{x^{2}}$
At $A, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{48}{x^{2}}=-\frac{2}{3} \Rightarrow \frac{48}{x^{2}}=\frac{2}{3}$

Hence, $2 x^{2}=144 \Rightarrow x^{2}=72 \Rightarrow x= \pm \sqrt{72} \Rightarrow x= \pm 6 \sqrt{2}$ Note: $\sqrt{72}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$.
When $x=6 \sqrt{2} \Rightarrow y=\frac{48}{6 \sqrt{2}}=\frac{8}{\sqrt{2}}=\frac{8 \sqrt{2}}{\sqrt{2} \sqrt{2}}=4 \sqrt{2}$.
When $x=-6 \sqrt{2} \Rightarrow y=\frac{48}{-6 \sqrt{2}}=\frac{-8}{\sqrt{2}}=\frac{-8 \sqrt{2}}{\sqrt{2} \sqrt{2}}=-4 \sqrt{2}$.

Hence the possible exact coordinates of A are $(6 \sqrt{2}, 4 \sqrt{2})$ or $(-6 \sqrt{2},-4 \sqrt{2})$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 6

Question:

The curve H is defined by the equations $x=\sqrt{3} t, y=\frac{\sqrt{3}}{t}, t \in \mathbb{R}, t \neq 0$.
The point P lies on H with x-coordinate $2 \sqrt{3}$. Find:
a a Cartesian equation for the curve H,
b an equation of the normal to H at P.
The normal to H at P meets H again at the point Q.
c Find the exact coordinates of Q.

Solution:

a $x y=\sqrt{3} t \times\left(\frac{\sqrt{3}}{t}\right)$

$$
x y=\frac{3 t}{t}
$$

Hence, the Cartesian equation of H is $x y=3$.
b $x y=3 \Rightarrow y=3 x^{-1}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 x^{-2}=-\frac{3}{x^{2}}
$$

At $x=2 \sqrt{3}, m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{3}{(2 \sqrt{3})^{2}}=-\frac{3}{12}=-\frac{1}{4}$
Gradient of tangent at P is $m_{T}=-\frac{1}{4}$.

So gradient of normal at P is $m_{N}=\frac{-1}{\left(-\frac{1}{4}\right)}=4$.

At P, when $x=2 \sqrt{3}, \Rightarrow 2 \sqrt{3}=\sqrt{3} t \Rightarrow t=\frac{2 \sqrt{3}}{\sqrt{3}}=2$
When $t=2, y=\frac{\sqrt{3}}{2} \Rightarrow P\left(2 \sqrt{3}, \frac{\sqrt{3}}{2}\right)$.
$\mathbf{N}: y-\frac{\sqrt{3}}{2}=4(x-2 \sqrt{3})$
$\mathbf{N}: 2 y-\sqrt{3}=8(x-2 \sqrt{3})$
N: $2 y-\sqrt{3}=8 x-16 \sqrt{3}$
$\mathbf{N}: 0=8 x-2 y-16 \sqrt{3}+\sqrt{3}$
$\mathbf{N}: 0=8 x-2 y-15 \sqrt{3}$

The equation of the normal to H at P is $8 x-2 y-15 \sqrt{3}=0$.
c Normal N: $8 x-2 y-15 \sqrt{3}=0$

Hyperbola $H: \quad x y=3$
Rearranging (2) gives
$y=\frac{3}{x}$

Substituting this equation into (1) gives
$8 x-2\left(\frac{3}{x}\right)-15 \sqrt{3}=0$
$8 x-\left(\frac{6}{x}\right)-15 \sqrt{3}=0$

Multiplying both sides by x gives
$8 x-\left(\frac{6}{x}\right)-15 \sqrt{3}=0$
$8 x^{2}-6-15 \sqrt{3} x=0$
$8 x^{2}-15 \sqrt{3} x-6=0$
At P, it is already known that $x=2 \sqrt{3}$, so $(x-2 \sqrt{3})$ is a factor of this quadratic equation. Hence,
$(x-2 \sqrt{3})(8 x+\sqrt{3})=0$
$x=2 \sqrt{3}($ at $P)$ or $x=-\frac{\sqrt{3}}{8}($ at $Q)$.

At P, when $x=-\frac{\sqrt{3}}{8}, \Rightarrow \frac{-\sqrt{3}}{8}=\sqrt{3} t \Rightarrow t=\frac{-\sqrt{3}}{8 \sqrt{3}}=-\frac{1}{8}$
When $t=-\frac{1}{8}, y=\frac{\sqrt{3}}{\left(-\frac{1}{8}\right)}=-8 \sqrt{3} \Rightarrow Q\left(-\frac{1}{8} \sqrt{3},-8 \sqrt{3}\right)$.

Hence the coordinates of Q are $\left(-\frac{1}{8} \sqrt{3},-8 \sqrt{3}\right)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise D, Question 7

Question:

The point $P\left(4 t^{2}, 8 t\right)$ lies on the parabola C with equation $y^{2}=16 x$. The point P also lies on the rectangular hyperbola H with equation $x y=4$.
a Find the value of t, and hence find the coordinates of P.

The normal to H at P meets the x-axis at the point N.
b Find the coordinates of N.

The tangent to C at P meets the x-axis at the point T.
c Find the coordinates of T.
d Hence, find the area of the triangle $N P T$.

Solution:

a Substituting $x=4 t^{2}$ and $y=8 t$ into $x y=4$ gives
$\left(4 t^{2}\right)(8 t)=4 \Rightarrow 32 t^{3}=4 \Rightarrow t^{3}=\frac{4}{32}=\frac{1}{8}$.

So $t=\sqrt[3]{\left(\frac{1}{8}\right)}$.

When $t=\frac{1}{2}, x=4\left(\frac{1}{2}\right)^{2}=1$.

When $t=\frac{1}{2}, y=8\left(\frac{1}{2}\right)=4$.

Hence the value of t is $\frac{1}{2}$ and P has coordinates (1,4).
b $x y=4 \Rightarrow y=4 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-4 x^{-2}=-\frac{4}{x^{2}}$
At $P(1,4), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{(1)^{2}}=-\frac{4}{1}=-4$

Gradient of tangent at $P(1,4)$ is $m_{T}=-4$.

So gradient of normal at $P(1,4)$ is $m_{N}=\frac{-1}{-4}=\frac{1}{4}$.
$\mathbf{N}: y-4=\frac{1}{4}(x-1)$
$\mathbf{N}: 4 y-16=x-1$
$\mathbf{N}: 0=x-4 y+15$
\mathbf{N} cuts x-axis $\Rightarrow y=0 \Rightarrow 0=x+15 \Rightarrow x=-15$

Therefore, the coordinates of N are $(-15,0)$.
c For $P(1,4), y>0$, so
$y^{2}=16 x \Rightarrow y=\sqrt{16 x}=\sqrt{16} \sqrt{x}=4 \sqrt{x}=4 \sqrt{x}=4 x^{\frac{1}{2}}$
So $y=4 x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=4\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=2 x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}$
At $P(1,4), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{1}}=\frac{2}{1}=2$.

Gradient of tangent at $P(1,4)$ is $m_{T}=2$.
$\mathbf{T}: y-4=2(x-1)$
T: $y-4=2 x-2$

T: $0=2 x-y+2$
\mathbf{T} cuts x-axis $\Rightarrow y=0 \Rightarrow 0=2 x+2 \Rightarrow x=-1$

Therefore, the coordinates of T are $(-1,0)$.
d

Using sketch drawn, Area $\triangle N P T=\operatorname{Area}(R+S)-\operatorname{Area}(S)$

$$
\begin{aligned}
& =\frac{1}{2}(16)(4)-\frac{1}{2}(2)(4) \\
& =32-4 \\
& =28
\end{aligned}
$$

Therefore, Area $\triangle N P T=28$
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 1

Question:

The point $P\left(3 t^{2}, 6 t\right)$ lies on the parabola C with equation $y^{2}=12 x$.
a Show that an equation of the tangent to C at P is $y t=x+3 t^{2}$.
b Show that an equation of the normal to C at P is $x t+y=3 t^{3}+6 t$.

Solution:

a $C: y^{2}=12 x \Rightarrow y= \pm \sqrt{12 x}= \pm \sqrt{4} \sqrt{3} \sqrt{x}= \pm 2 \sqrt{3} x^{\frac{1}{2}}$
So $y= \pm 2 \sqrt{3} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm 2 \sqrt{3}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}= \pm \sqrt{3} x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{\sqrt{3}}{\sqrt{x}}$
At $P\left(3 t^{2}, 6 t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{\sqrt{3}}{\sqrt{3 t^{2}}}= \pm \frac{\sqrt{3}}{\sqrt{3} t}=\frac{1}{t}$.
$\mathbf{T}: y-6 t=\frac{1}{t}\left(x-3 t^{2}\right)$
$\mathbf{T}: t y-6 t^{2}=x-3 t^{2}$
$\mathbf{T}: y t=x-3 t^{2}+6 t^{2}$
$\mathbf{T}: y t=x+3 t^{2}$
The equation of the tangent to C at P is $y t=x+3 t^{2}$.
b Gradient of tangent at $P\left(3 t^{2}, 6 t\right)$ is $m_{T}=\frac{1}{t}$.
So gradient of normal at $P\left(3 t^{2}, 6 t\right)$ is $m_{N}=\frac{-1}{\left(\frac{1}{t}\right)}=-t$.
$\mathbf{N}: y-6 t=-t\left(x-3 t^{2}\right)$
$\mathbf{N}: y-6 t=-t x+3 t^{3}$
$\mathbf{N}: x t+y=3 t^{3}+6 t$.
The equation of the normal to C at P is $x t+y=3 t^{3}+6 t$.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 2

Question:

The point $P\left(6 t, \frac{6}{t}\right), t \neq 0$, lies on the rectangular hyperbola H with equation $x y=36$.
a Show that an equation of the tangent to H at P is $x+t^{2} y=12 t$.
b Show that an equation of the normal to H at P is $t^{3} x-t y=6\left(t^{4}-1\right)$.

Solution:

a $H: x y=36 \Rightarrow y=36 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-36 x^{-2}=-\frac{36}{x^{2}}$
At $P\left(6 t, \frac{6}{t}\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{36}{(6 t)^{2}}=-\frac{36}{36 t^{2}}=-\frac{1}{t^{2}}$

T: $y-\frac{6}{t}=-\frac{1}{t^{2}}(x-6 t) \quad$ (Now multiply both sides by t^{2}.)
T: $t^{2} y-6 t=-(x-6 t)$
T: $t^{2} y-6 t=-x+6 t$
$\mathbf{T}: x+t^{2} y=6 t+6 t$
$\mathbf{T}: x+t^{2} y=12 t$
The equation of the tangent to H at P is $x+t^{2} y=12 t$.
b Gradient of tangent at $P\left(6 t, \frac{6}{t}\right)$ is $m_{T}=-\frac{1}{t^{2}}$.
So gradient of normal at $P\left(6 t, \frac{6}{t}\right)$ is $m_{N}=\frac{-1}{\left(-\frac{1}{t^{2}}\right)}=t^{2}$.
$\mathbf{N}: y-\frac{6}{t}=t^{2}(x-6 t) \quad$ (Now multiply both sides by t.)
$\mathbf{N}: t y-6=t^{3}(x-6 t)$
$\mathbf{N}: t y-6=t^{3} x-6 t^{4}$
$\mathbf{N}: 6 t^{4}-6=t^{3} x-t y$
$\mathbf{N}: 6\left(t^{4}-1\right)=t^{3} x-t y$
The equation of the normal to H at P is $t^{3} x-t y=6\left(t^{4}-1\right)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 3

Question:

The point $P\left(5 t^{2}, 10 t\right)$ lies on the parabola C with equation $y^{2}=4 a x$, where a is a constant and $t \neq 0$.
a Find the value of a.
b Show that an equation of the tangent to C at P is $y t=x+5 t^{2}$.

The tangent to C at P cuts the x-axis at the point X and the y-axis at the point Y. The point O is the origin of the coordinate system.
c Find, in terms of t, the area of the triangle $O X Y$.

Solution:

a Substituting $x=5 t^{2}$ and $y=10 t$ into $y^{2}=4 a x$ gives
$(10 t)^{2}=4(a)\left(5 t^{2}\right) \Rightarrow 100 t^{2}=20 t^{2} a \Rightarrow a=\frac{100 t^{2}}{20 t^{2}}=5$
So, $a=5$.
b When $a=5, y^{2}=4(5) x \Rightarrow y^{2}=20 x$.
$C: y^{2}=20 x \Rightarrow y= \pm \sqrt{20 x}= \pm \sqrt{4} \sqrt{5} \sqrt{x}= \pm 2 \sqrt{5} x^{\frac{1}{2}}$
So $y= \pm 2 \sqrt{5} x \frac{1}{2}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm 2 \sqrt{5}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}= \pm \sqrt{5} x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{\sqrt{5}}{\sqrt{x}}$
At $P\left(5 t^{2}, 10 t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{5}}{\sqrt{5 t^{2}}}=\frac{\sqrt{5}}{\sqrt{5} t}=\frac{1}{t}$.
$\mathbf{T}: y-10 t=\frac{1}{t}\left(x-5 t^{2}\right)$
$\mathbf{T}: t y-10 t^{2}=x-5 t^{2}$
$\mathbf{T}: y t=x-5 t^{2}+10 t^{2}$
$\mathbf{T}: y t=x+5 t^{2}$

Therefore, the equation of the tangent to C at P is $y t=x+5 t^{2}$.

For $\left(a t^{2}, 2 a t\right)$ on $y^{2}=4 a x$

We always get $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{2}\right)=4 a$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2 a}{y}=\frac{2 a}{2 a c}=\frac{1}{t}$
c T: $y t=x+5 t^{2}$

T cuts x-axis $\Rightarrow y=0 \Rightarrow 0=x+5 t^{2} \Rightarrow x=-5 t^{2}$

Hence the coordinates of X are $\left(-5 t^{2}, 0\right)$.
\mathbf{T} cuts y-axis $\Rightarrow x=0 \Rightarrow y t=5 t^{2} \Rightarrow y=5 t$
Hence the coordinates of Y are $(0,5 t)$.

Using sketch drawn, Area $\triangle O X Y=\frac{1}{2}\left(5 t^{2}\right)(5 t)$

$$
=\frac{25}{2} t^{3}
$$

Therefore, Area $\triangle O X Y=\frac{25}{2} t^{3}$
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 4

Question:

The point $P\left(\mathrm{a} t^{2}, 2 a t\right), t \neq 0$, lies on the parabola C with equation $y^{2}=4 a x$, where a is a positive constant.
a Show that an equation of the tangent to C at P is $t y=x+a t^{2}$.

The tangent to C at the point A and the tangent to C at the point B meet at the point with coordinates $(-4 a, 3 a)$.
b Find, in terms of a, the coordinates of A and the coordinates of B.

Solution:

a $C: y^{2}=4 a x \Rightarrow y= \pm \sqrt{4 a x}=\sqrt{4} \sqrt{a} \sqrt{x}=2 \sqrt{a} x^{\frac{1}{2}}$

So $y=2 \sqrt{a} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{a}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{a} x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{x}}$

At $P\left(a t^{2}, 2 a t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{a t^{2}}}=\frac{\sqrt{a}}{\sqrt{a} t}=\frac{1}{t}$.
$\mathbf{T}: y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$
$\mathbf{T}: t y-2 a t^{2}=x-a t^{2}$
$\mathbf{T}: t y=x-a t^{2}+2 a t^{2}$
$\mathbf{T}: t y=x+a t^{2}$

The equation of the tangent to C at P is $t y=x+a t^{2}$.
b As the tangent \mathbf{T} goes through $(-4 a, 3 a)$, then substitute $x=-4 a$ and $y=3 a$ into \mathbf{T}.
$t(3 a)=-4 a+a t^{2}$
$0=a t^{2}-3 a t-4 a$
$t^{2}-3 t-4=0$
$(t+1)(t-4)=0$
$t=-1,4$

When $t=-1, x=a(-1)^{2}=a, y=2 a(-1)=-2 a \Rightarrow(a,-2 a)$.
When $t=4, x=a(4)^{2}=16 a, y=2 a(4)=8 a \Rightarrow(16 a, 8 a)$.

The coordinates of A and B are $(a,-2 a)$ and $(16 a, 8 a)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 5

Question:

The point $P\left(4 t, \frac{4}{t}\right), t \neq 0$, lies on the rectangular hyperbola H with equation $x y=16$.
a Show that an equation of the tangent to C at P is $x+t^{2} y=8 t$.

The tangent to H at the point A and the tangent to H at the point B meet at the point X with y-coordinate 5. X lies on the directrix of the parabola C with equation $y^{2}=16 x$.
b Write down the coordinates of X.
c Find the coordinates of A and B.
d Deduce the equations of the tangents to H which pass through X. Give your answers in the form $a x+b y+c=0$, where a, b and c are integers.

Solution:

a $H: x y=16 \Rightarrow y=16 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-16 x^{-2}=-\frac{16}{x^{2}}$

At $P\left(4 t, \frac{4}{t}\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{16}{(4 t)^{2}}=-\frac{16}{16 t^{2}}=-\frac{1}{t^{2}}$
T: $y-\frac{4}{t}=-\frac{1}{t^{2}}(x-4 t) \quad$ (Now multiply both sides by t^{2}.)
$\mathbf{T}: t^{2} y-4 t=-(x-4 t)$
$\mathbf{T}: t^{2} y-4 t=-x+4 t$
$\mathbf{T}: x+t^{2} y=4 t+4 t$
$\mathbf{T}: x+t^{2} y=8 t$
The equation of the tangent to H at P is $x+t^{2} y=8 t$.
b $y^{2}=16 x$. So $4 a=16$, gives $a=\frac{16}{4}=4$.

So the directrix has equation $x+4=0$ or $x=-4$.

Therefore at $X, x=-4$ and as stated $y=5$.
The coordinates of X are $(-4,5)$.
c T: $x+t^{2} y=8 t$

As the tangent \mathbf{T} goes through ($-4,5$), then substitute $x=-4$ and $y=5$ into \mathbf{T}.

$$
\begin{aligned}
& (-4)+t^{2}(5)=8 t \\
& 5 t^{2}-4=8 t \\
& 5 t^{2}-8 t-4=0 \\
& (t-2)(5 t+2)=0 \\
& t=2,-\frac{2}{5}
\end{aligned}
$$

When $t=2, x=4(2)=8, y=\frac{4}{2}=2 \Rightarrow(8,2)$.
When $t=-\frac{2}{5}, x=4\left(-\frac{2}{5}\right)=-\frac{8}{5}, y=\frac{4}{\left(-\frac{2}{5}\right)}=-10 \Rightarrow\left(-\frac{8}{5},-10\right)$.
The coordinates of A and B are $(8,2)$ and $\left(-\frac{8}{5},-10\right)$.
d Substitute $t=2$ and $t=-\frac{2}{5}$ into \mathbf{T} to find the equations of the tangents to H that go through the point X.
When $t=2, \mathbf{T}: x+4 y=16 \Rightarrow x+4 y-16=0$
When $t=-\frac{2}{5}, \mathbf{T}: x+\left(-\frac{2}{5}\right)^{2} y=8\left(-\frac{2}{5}\right)$
$\mathbf{T}: x+\frac{4}{25} y=-\frac{16}{5}$
T: $25 x+4 y=-80$

T: $25 x+4 y+80=0$

Hence the equations of the tangents are $x+4 y-16=0$ and $25 x+4 y+80=0$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 6

Question:

The point $P\left(a t^{2}, 2 a t\right)$ lies on the parabola C with equation $y^{2}=4 a x$, where a is a constant and $t \neq 0$. The tangent to C at P cuts the x-axis at the point A.
a Find, in terms of a and t, the coordinates of A.
The normal to C at P cuts the x-axis at the point B.
b Find, in terms of a and t, the coordinates of B.
c Hence find, in terms of a and t, the area of the triangle $A P B$.

Solution:

a $C: y^{2}=4 a x \Rightarrow y= \pm \sqrt{4 a x}=\sqrt{4} \sqrt{a} \sqrt{x}=2 \sqrt{a} x^{\frac{1}{2}}$

So $y=2 \sqrt{a} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{a}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{a} x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{x}}$

At $P\left(a t^{2}, 2 a t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{a t^{2}}}=\frac{\sqrt{a}}{\sqrt{a} t}=\frac{1}{t}$.
$\mathbf{T}: y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$
$\mathbf{T}: t y-2 a t^{2}=x-a t^{2}$
$\mathbf{T}: t y=x-a t^{2}+2 a t^{2}$
$\mathbf{T}: t y=x+a t^{2}$

T cuts x-axis $\Rightarrow y=0$. So,
$0=x+a t^{2} \Rightarrow x=-a t^{2}$

The coordinates of A are $\left(-a t^{2}, 0\right)$.
b Gradient of tangent at $P\left(a t^{2}, 2 a t\right)$ is $m_{T}=\frac{1}{t}$.
So gradient of normal at $P\left(a t^{2}, 2 a t\right)$ is $m_{N}=\frac{-1}{\left(\frac{1}{t}\right)}=-t$.
$\mathbf{N}: y-2 a t=-t\left(x-a t^{2}\right)$
$\mathbf{N}: y-2 a t=-t x+a t^{3}$
\mathbf{N} cuts x-axis $\Rightarrow y=0$. So,
$0-2 a t=-t x+a t^{3}$
$t x=2 a t+a t^{3}$
$x=2 a+a t^{2}$

The coordinates of B are $\left(2 a+a t^{2}, 0\right)$.
c

Using sketch drawn, Area $\triangle A P B=\frac{1}{2}\left(2 a+2 a t^{2}\right)(2 a t)$

$$
\begin{aligned}
& =\quad a t\left(2 a+2 a t^{2}\right) \\
& =\quad 2 a^{2} t\left(1+t^{2}\right)
\end{aligned}
$$

Therefore, Area $\triangle A P B=2 a^{2} t\left(1+t^{2}\right)$
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 7

Question:

The point $P\left(2 t^{2}, 4 t\right)$ lies on the parabola C with equation $y^{2}=8 x$.
a Show that an equation of the normal to C at P is $x t+y=2 t^{3}+4 t$.

The normals to C at the points R, S and T meet at the point $(12,0)$.
b Find the coordinates of R, S and T.
c Deduce the equations of the normals to C which all pass through the point $(12,0)$.

Solution:

a $C: y^{2}=8 x \Rightarrow y= \pm \sqrt{8 x}=\sqrt{4} \sqrt{2} \sqrt{x}=2 \sqrt{2} x^{\frac{1}{2}}$
So $y=2 \sqrt{2} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{2}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{2} x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{2}}{\sqrt{x}}$

At $P\left(2 t^{2}, 4 t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{2}}{\sqrt{2 t^{2}}}=\frac{\sqrt{2}}{\sqrt{2} t}=\frac{1}{t}$.

Gradient of tangent at $P\left(2 t^{2}, 4 t\right)$ is $m_{T}=\frac{1}{t}$.

So gradient of normal at $P\left(2 t^{2}, 4 t\right)$ is $m_{N}=\frac{-1}{\left(\frac{1}{t}\right)}=-t$.
$\mathbf{N}: y-4 t=-t\left(x-2 t^{2}\right)$
$\mathbf{N}: y-4 t=-t x+2 t^{3}$
$\mathbf{N}: x t+y=2 t^{3}+4 t$.

The equation of the normal to C at P is $x t+y=2 t^{3}+4 t$.
b As the normals go through $(12,0)$, then substitute $x=12$ and $y=0$ into \mathbf{N}.

```
(12) \(t+0=2 t^{3}+4 t\)
\(12 t=2 t^{3}+4 t\)
\(0=2 t^{3}+4 t-12 t\)
\(0=2 t^{3}-8 t\)
\(t^{3}-4 t=0\)
\(t\left(t^{2}-4\right)=0\)
\(t(t-2)(t+2)=0\)
\(t=0,2,-2\)
```

When $t=0, \quad x=2(0)^{2}=0, \quad y=4(0)=0 \quad \Rightarrow(0,0)$.
When $t=2, \quad x=2(2)^{2}=8, \quad y=4(2)=8 \quad \Rightarrow(8,8)$.
When $t=-2, \quad x=2(-2)^{2}=8, \quad y=4(-2)=-8 \quad \Rightarrow(8,-8)$.
The coordinates of R, S and T are $(0,0),(8,8)$ and $(8,-8)$.
c Substitute $t=0,2,-2$ into $x t+y=2 t^{3}+4 t$. to find the equations of the normals to H that go through the point $(12,0)$.
When $t=0, \mathbf{N}: 0+y=0+0 . \Rightarrow y=0$
When $t=2, \mathbf{N}: x(2)+y=2(8)+4(2)$
$\mathbf{N}: 2 x+y=24$
$\mathbf{N}: 2 x+y-24=0$

When $t=-2, \mathbf{N}: x(-2)+y=2(-8)+4(-2)$
$\mathbf{N}:-2 x+y=-24$
$\mathbf{N}: 2 x-y-24=0$

Hence the equations of the normals are $y=0,2 x+y-24=0$ and $2 x-y-24=0$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 8

Question:

The point $P\left(a t^{2}, 2 a t\right)$ lies on the parabola C with equation $y^{2}=4 a x$, where a is a positive constant and $t \neq 0$. The tangent to C at P meets the y-axis at Q.
a Find in terms of a and t, the coordinates of Q.

The point S is the focus of the parabola.
b State the coordinates of S.
c Show that $P Q$ is perpendicular to $S Q$.

Solution:

a $C: y^{2}=4 a x \Rightarrow y=\sqrt{4 a x}=\sqrt{4} \sqrt{a} \sqrt{x}=2 \sqrt{a} x^{\frac{1}{2}}$

So $y=2 \sqrt{a} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{a}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{a} x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{x}}$

At $P\left(a t^{2}, 2 a t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{a t^{2}}}=\frac{\sqrt{a}}{\sqrt{a} t}=\frac{1}{t}$.
$\mathbf{T}: y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$
$\mathbf{T}: t y-2 a t^{2}=x-a t^{2}$
$\mathbf{T}: t y=x-a t^{2}+2 a t^{2}$
$\mathbf{T}: t y=x+a t^{2}$
\mathbf{T} meets y-axis $\Rightarrow x=0$. So,
$t y=0+a t^{2} \Rightarrow y=\frac{a t^{2}}{t} \Rightarrow y=a t$
The coordinates of Q are $(0, a t)$.
b The focus of a parabola with equation $y^{2}=4 a x$ has coordinates $(a, 0)$.

So, the coordinates of S are $(a, 0)$.
c $P\left(a t^{2}, 2 a t\right), Q(0, a t)$ and $S(a, 0)$.
$m_{P Q}=\frac{a t-2 a t}{0-a t^{2}}=\frac{-a t}{-a t^{2}}=\frac{1}{t}$.
$m_{S Q}=\frac{0-a t}{a-0}=-\frac{a t}{a}=-t$.

Therefore, $m_{P Q} \times m_{S Q}=\frac{1}{t} \times-t=-1$.

So $P Q$ is perpendicular to $S Q$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise E, Question 9

Question:

The point $P\left(6 t^{2}, 12 t\right)$ lies on the parabola C with equation $y^{2}=24 x$.
a Show that an equation of the tangent to the parabola at P is $t y=x+6 t^{2}$.

The point X has y-coordinate 9 and lies on the directrix of C.
b State the x-coordinate of X.

The tangent at the point B on C goes through point X.
c Find the possible coordinates of B.

Solution:

a $C: y^{2}=24 x \Rightarrow y= \pm \sqrt{24 x}=\sqrt{4} \sqrt{6} \sqrt{x}=2 \sqrt{6} x^{\frac{1}{2}}$
So $y=2 \sqrt{6} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{6}\left(\frac{1}{2}\right) x^{\frac{1}{2}}=\sqrt{6} x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{6}}{\sqrt{x}}$

At $P\left(6 t^{2}, 12 t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{6}}{\sqrt{6 t^{2}}}=\frac{\sqrt{6}}{\sqrt{6} t}=\frac{1}{t}$.
$\mathbf{T}: y-12 t=\frac{1}{t}\left(x-6 t^{2}\right)$
$\mathbf{T}: t y-12 t^{2}=x-6 t^{2}$
$\mathbf{T}: t y=x-6 t^{2}+12 t^{2}$
$\mathbf{T}: t y=x+6 t^{2}$

The equation of the tangent to C at P is $t y=x+6 t^{2}$.
b $y^{2}=24 x$. So $4 a=24$, gives $a=\frac{24}{4}=6$.

So the directrix has equation $x+6=0$ or $x=-6$.

Therefore at $X, x=-6$.
c T: $t y=x+6 t^{2}$ and the coordinates of X are $(-6,9)$.

As the tangent \mathbf{T} goes through ($-6,9$), then substitute $x=-6$ and $y=9$ into \mathbf{T}.
$t(9)=-6+6 t^{2}$
$0=6 t^{2}-9 t-6$
$2 t^{2}-3 t-2=0$
$(t-2)(2 t+1)=0$
$t=2,-\frac{1}{2}$

When $t=2, \quad x=6(2)^{2}=24, \quad y=12(2)=24 \Rightarrow(24,24)$.
When $t=-\frac{1}{2}, \quad x=6\left(-\frac{1}{2}\right)^{2}=\frac{3}{2}, \quad y=12\left(-\frac{1}{2}\right)=-6 \Rightarrow\left(\frac{3}{2},-6\right)$.
The possible coordinates of B are $(24,24)$ and $\left(\frac{3}{2},-6\right)$.
(C) Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 1

Question:

A parabola C has equation $y^{2}=12 x$. The point S is the focus of C.
a Find the coordinates of S

The line l with equation $y=3 x$ intersects C at the point P where $y>0$.
b Find the coordinates of P.
c Find the area of the triangle $O P S$, where O is the origin.

Solution:

a $y^{2}=12 x$. So $4 a=12$, gives $a=\frac{12}{4}=3$.

So the focus S, has coordinates $(3,0)$.
b Line $l: \quad y=3 x \quad$ (1)

Parabola $C: \quad y^{2}=12 x$

Substituting (1) into (2) gives
$(3 x)^{2}=12 x$
$9 x^{2}=12 x$
$9 x^{2}-12 x=0$
$3 x(3 x-4)=0$
$x=0, \frac{4}{3}$

Substituting these values of x back into equation (1) gives
$x=0, y=3(0) \quad=0 \Rightarrow(0,0)$
$x=\frac{4}{3}, y=3\left(\frac{4}{3}\right)=4 \Rightarrow\left(\frac{4}{3}, 4\right)$

As $y>0$, the coordinates of P are $\left(\frac{4}{3}, 4\right)$.
c

Using sketch drawn, Area $\triangle O P S=\frac{1}{2}(3)(4)$

$$
=\frac{1}{2}(12)
$$

$$
=6
$$

Therefore, Area $\triangle O P S=6$
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 2

Question:

A parabola C has equation $y^{2}=24 x$. The point P with coordinates $(k, 6)$, where k is a constant lies on C.
a Find the value of k.

The point S is the focus of C.
b Find the coordinates of S.

The line l passes through S and P and intersects the directrix of C at the point D.
c Show that an equation for l is $4 x+3 y-24=0$.
d Find the area of the triangle $O P D$, where O is the origin.

Solution:

$\mathbf{a}(k, 6)$ lies on $y^{2}=24 x$ gives
$6^{2}=24 k \Rightarrow 36=24 k \Rightarrow \frac{36}{24}=k \Rightarrow k=\frac{3}{2}$.
b $y^{2}=24 x$. So $4 a=24$, gives $a=\frac{24}{4}=6$.

So the focus S, has coordinates $(6,0)$.
c The point P and S have coordinates $P\left(\frac{3}{2}, 6\right)$ and $S(6,0)$.
$m_{l}=m_{P S}=\frac{0-6}{6-\frac{3}{2}}=\frac{-6}{\frac{9}{2}}=-\frac{12}{9}=-\frac{4}{3}$
l: $y-0=-\frac{4}{3}(x-6)$
l: $3 y=-4(x-6)$
l: $3 y=-4 x+24$
$l: 4 x+3 y-24=0$

Therefore an equation for l is $4 x+3 y-24=0$.
d From (b), as $a=6$, an equation of the directrix is $x+6=0$ or $x=-6$. Substituting $x=-6$ into l gives:
$4(-6)+3 y-24=0$
$3 y=24+24$
$3 y=48$
$y=16$

Hence the coordinates of D are $(-6,16)$.

Using the sketch and the regions as labeled you can find the area required. Let Area $\triangle O P D=\operatorname{Area}(R)$

Method 1

$$
\begin{aligned}
\operatorname{Area}(R) & =\operatorname{Area}(R S T)-\operatorname{Area}(S)-\operatorname{Area}(T) \\
& =\frac{1}{2}(16+6)\left(\frac{15}{2}\right)-\frac{1}{2}(6)(16)-\frac{1}{2}\left(\frac{3}{2}\right)(6) \\
& =\frac{1}{2}(22)\left(\frac{15}{2}\right)-(3)(16)-\left(\frac{3}{2}\right)(3) \\
& =\left(\frac{165}{2}\right)-48-\left(\frac{9}{2}\right) \\
& =30
\end{aligned}
$$

Therefore, Area $\triangle O P D=30$

Method 2

$$
\begin{aligned}
\operatorname{Area}(R) & =\operatorname{Area}(R S T U)-\operatorname{Area}(S)-\operatorname{Area}(T U) \\
& =\frac{1}{2}(12)(16)-\frac{1}{2}(6)(16)-\frac{1}{2}(6)(6) \\
& =96-48-18 \\
& =30
\end{aligned}
$$

Therefore, Area $\triangle O P D=30$
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 3

Question:

The parabola C has parametric equations $x=12 t^{2}, y=24 t$. The focus to C is at the point S.
a Find a Cartesian equation of C.

The point P lies on C where $y>0 . P$ is 28 units from S.
b Find an equation of the directrix of C.
c Find the exact coordinates of the point P.
d Find the area of the triangle $O S P$, giving your answer in the form $k \sqrt{3}$, where k is an integer.

Solution:

a $\quad y=24 t$

So $\quad t=\frac{y}{24}$

$$
\begin{equation*}
x=12 t^{2} \tag{2}
\end{equation*}
$$

Substitute (1) into (2):

$$
x=12\left(\frac{y}{24}\right)^{2}
$$

So $\quad x=\frac{12 y^{2}}{576}$ simplifies to $x=\frac{y^{2}}{48}$
Hence, the Cartesian equation of C is $y^{2}=48 x$.
b $y^{2}=48 x$. So $4 a=48$, gives $a=\frac{48}{4}=12$.

Therefore an equation of the directrix of C is $x+12=0$ or $x=-12$.
c
From (b), as $a=12$, the coordinates of S, the focus to C are $(12,0)$. Hence, drawing a sketch gives,

The (shortest) distance of P to the line $x=-16$ is the distance $X P$.

The distance $S P=28$.
The focus-directrix property implies that $S P=X P=28$.

The directrix has equation $x=-12$.

$x=-12$
When $x=16, y^{2}=48(16) \Rightarrow y^{2}=3(16)^{2}$
As $y>0$, then $y=\sqrt{3(16)^{2}}=16 \sqrt{3}$.
Hence the exact coordinates of P are $(16,16 \sqrt{3})$.
d

Using the sketch and the regions as labeled you can find the area required. Let Area $\triangle O S P=\operatorname{Area}(A)$

$$
\begin{aligned}
\operatorname{Area}(A) & =\operatorname{Area}(A B)-\operatorname{Area}(B) \\
& =\frac{1}{2}(16)(16 \sqrt{3})-\frac{1}{2}(4)(16 \sqrt{3}) \\
& =128 \sqrt{3}-32 \sqrt{3} \\
& =96 \sqrt{3}
\end{aligned}
$$

Therefore, Area $\triangle O S P=96 \sqrt{3}$ and $k=96$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 4

Question:

The point $\left(4 t^{2}, 8 t\right)$ lies on the parabola C with equation $y^{2}=16 x$. The line l with equation $4 x-9 y+32=0$ intersects the curve at the points P and Q.
a Find the coordinates of P and Q.
b Show that an equation of the normal to C at $\left(4 t^{2}, 8 t\right)$ is $x t+y=4 t^{3}+8 t$.
c Hence, find an equation of the normal to C at P and an equation of the normal to C at Q.

The normal to C at P and the normal to C at Q meet at the point R.
d Find the coordinates of R and show that R lies on C.
e Find the distance $O R$, giving your answer in the form $k \sqrt{97}$, where k is an integer.

Solution:

a Method 1

Line: $\quad 4 x-9 y+32=0$

Parabola C : $\quad y^{2}=16 x$

Multiplying (1) by 4 gives
$16 x-36 y+128=0(3)$

Substituting (2) into (3) gives

```
\(y^{2}-36 y+128=0\)
\((y-4)(y-32)=0\)
\(y=4,32\)
```

When $y=4, \quad 4^{2}=16 x \Rightarrow x=\frac{16}{16}=1 \quad \Rightarrow(1,4)$.
When $y=32,32^{2}=16 x \Rightarrow x=\frac{1024}{16}=64 \Rightarrow(64,32)$.

The coordinates of P and Q are $(1,4)$ and $(64,32)$.

Method 2

Line: $\quad 4 x-9 y+32=0$

Parabola $C: x=4 t^{2}, y=8 t$

Substituting (2) into (1) gives
$4\left(4 t^{2}\right)-9(8 t)+32=0$
$16 t^{2}-72 t+32=0$
$2 t^{2}-9 t+4=0$
$(2 t-1)(t-4)=0$
$t=\frac{1}{2}, 4$

When $t=\frac{1}{2}, \quad x=4\left(\frac{1}{2}\right)^{2}=1, \quad y=8\left(\frac{1}{2}\right)=4 \quad \Rightarrow(1,4)$.

When $t=4, \quad x=4(4)^{2}=64, \quad y=8(4)=32 \Rightarrow(64,32)$.

The coordinates of P and Q are $(1,4)$ and $(64,32)$.
b $C: y^{2}=16 x \Rightarrow y=\sqrt{16 x}=\sqrt{16} \sqrt{x}=4 x^{\frac{1}{2}}$
So $y=4 x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=4\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=2 x^{-\frac{1}{2}}$

So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{x}}$

At $\left(4 t^{2}, 8 t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{4 t^{2}}}=\frac{2}{2 t}=\frac{1}{t}$.
Gradient of tangent at $\left(4 t^{2}, 8 t\right)$ is $m_{T}=\frac{1}{t}$.

So gradient of normal at $\left(4 t^{2}, 8 t\right)$ is $m_{N}=\frac{-1}{\left(\frac{1}{t}\right)}=-t$.
$\mathbf{N}: y-8 t=-t\left(x-4 t^{2}\right)$
$\mathbf{N}: y-8 t=-t x+4 t^{3}$
$\mathbf{N}: x t+y=4 t^{3}+8 t$.

The equation of the normal to C at $\left(4 t^{2}, 8 t\right)$ is $x t+y=4 t^{3}+8 t$.
c Without loss of generality, from part (a) P has coordinates (1,4) when $t=\frac{1}{2}$ and Q has coordinates $(64,32)$ when $t=4$.

When $t=\frac{1}{2}$,
$\mathbf{N}: x\left(\frac{1}{2}\right)+y=4\left(\frac{1}{2}\right)^{3}+8\left(\frac{1}{2}\right)$
$\mathbf{N}: \frac{1}{2} x+y=\frac{1}{2}+4$
$\mathbf{N}: x+2 y=1+8$
$\mathbf{N}: x+2 y-9=0$

When $t=4$,
$\mathbf{N}: x(4)+y=4(4)^{3}+8(4)$
$\mathbf{N}: 4 x+y=256+32$
$\mathbf{N}: 4 x+y-288=0$
d The normals to C at P and at Q are $x+2 y-9=0$ and $4 x+y-288=0$
$\mathbf{N}_{1}: \quad x+2 y-9=0$
$\mathbf{N}_{2}: \quad 4 x+y-288=0$

Multiplying (2) by 2 gives
$2 \times(\mathbf{2}): \quad 8 x+2 y-576=0$
(3) -(1): $7 x-567=0$

$$
\begin{gathered}
\Rightarrow 7 x=567 \Rightarrow x=\frac{567}{7}=81 \\
\text { (2) } \Rightarrow \quad y=288-4(81)=288-324=-36
\end{gathered}
$$

The coordinates of R are $(81,-36)$.
When $y=-36$, LHS $=y^{2}=(-36)^{2}=1296$

When $x=81$, RHS $=16 x=16(81)=1296$

As $L H S=R H S, R$ lies on C.
e The coordinates of O and R are $(0,0)$ and $(81,-36)$.

$$
\begin{aligned}
O R & =\sqrt{(81-0)^{2}+(-36-0)^{2}} ? \\
& =\sqrt{81^{2}+36^{2}} \\
& =\sqrt{7857} \\
& =\sqrt{(81)(97)} \\
& =\sqrt{81} \sqrt{97} \\
& =9 \sqrt{97}
\end{aligned}
$$

Hence the exact distance $O R$ is $9 \sqrt{97}$ and $k=9$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 5

Question:

The point $P\left(a t^{2}, 2 a t\right)$ lies on the parabola C with equation $y^{2}=4 a x$, where a is a positive constant. The point Q lies on the directrix of C. The point Q also lies on the x-axis.
a State the coordinates of the focus of C and the coordinates of Q.

The tangent to C at P passes through the point Q.
b Find, in terms of a, the two sets of possible coordinates of P.

Solution:

The focus and directrix of a parabola with equation $y^{2}=4 a x$, are $(a, 0)$ and $x+a=0$ respectively.
a Hence the coordinates of the focus of C are $(a, 0)$.

As Q lies on the x-axis then $y=0$ and so Q has coordinates $(-a, 0)$.
b $C: y^{2}=4 a x \Rightarrow y=\sqrt{4 a x}=\sqrt{4} \sqrt{a} \sqrt{x}=2 \sqrt{a} x^{\frac{1}{2}}$

So $y=2 \sqrt{a} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{a}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{a} x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{x}}$
At $P\left(a t^{2}, 2 a t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{a t^{2}}}=\frac{\sqrt{a}}{\sqrt{a t}}=\frac{1}{t}$.
$\mathbf{T}: y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$
$\mathbf{T}: t y-2 a t^{2}=x-a t^{2}$
$\mathbf{T}: t y=x-a t^{2}+2 a t^{2}$
$\mathbf{T}: t y=x+a t^{2}$

T passes through ($-a, 0$), so substitute $x=-a, y=0$ in \mathbf{T}.
$t(0)=-a+a t^{2} \Rightarrow 0=-a+a t^{2} \Rightarrow 0=-1+t^{2}$

So, $t^{2}-1=0 \Rightarrow(t-1)(t+1)=0 \Rightarrow t=1,-1$

When $t=1, \quad x=a(1)^{2}=a, \quad y=2 a(1)=2 a \quad \Rightarrow(a, 2 a)$.

When $t=-1, \quad x=a(-1)^{2}=a, \quad y=2 a(-1)=-2 a \Rightarrow(a,-2 a)$.

The possible coordinates of P are $(a, 2 a)$ or $(a,-2 a)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 6

Question:

The point $P\left(c t, \frac{c}{t}\right), c>0, t \neq 0$, lies on the rectangular hyperbola H with equation $x y=c^{2}$.
a Show that the equation of the normal to H at P is $t^{3} x-t y=c\left(t^{4}-1\right)$.
b Hence, find the equation of the normal n to the curve V with the equation $x y=36$ at the point $(12,3)$. Give your answer in the form $a x+b y=\mathrm{d}$, where a, b and d are integers.

The line n meets V again at the point Q.
c Find the coordinates of Q.

Solution:

a $H: x y=c^{2} \Rightarrow y=c^{2} x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}$
At $P\left(c t, \frac{c}{t}\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{(c t)^{2}}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}}$

Gradient of tangent at $P\left(c t, \frac{c}{t}\right)$ is $m_{T}=-\frac{1}{t^{2}}$.

So gradient of normal at $P\left(c t, \frac{c}{t}\right)$ is $m_{N}=\frac{-1}{\left(-\frac{1}{t^{2}}\right)}=t^{2}$.
$\mathbf{N}: y-\frac{c}{t}=t^{2}(x-c t) \quad$ (Now multiply both sides by t.)
$\mathbf{N}: t y-c=t^{3}(x-c t)$
$\mathbf{N}: t y-c=t^{3} x-c t^{4}$
$\mathbf{N}: c t^{4}-c=t^{3} x-t y$
$\mathbf{N}: t^{3} x-t y=c t^{4}-c$
$\mathbf{N}: t^{3} x-t y=c\left(t^{4}-1\right)$

The equation of the normal to H at P is $t^{3} x-t y=c\left(t^{4}-1\right)$.
b Comparing $x y=36$ with $x y=c^{2}$ gives $c=6$ and comparing the point $(12,3)$ with $\left(c t, \frac{c}{t}\right)$ gives
$c t=12 \Rightarrow(6) t=12 \Rightarrow t=2$. Therefore,
$n:(2)^{3} x-(2) y=6\left((2)^{4}-1\right)$
$n: 8 x-2 y=6(15)$
$n: 8 x-2 y=90$
$n: 4 x-y=45$

An equation for n is $4 x-y=45$.
c Normal $n: \quad 4 x-y=45$ (1)

Hyperbola $V: \quad x y=36$

Rearranging (2) gives
$y=\frac{36}{x}$

Substituting this equation into (1) gives
$4 x-\left(\frac{36}{x}\right)=45$

Multiplying both sides by x gives
$4 x^{2}-36=45 x$
$4 x^{2}-45 x-36=0$
$(x-12)(4 x+3)=0$
$x=12,-\frac{3}{4}$

It is already known that $x=12$. So at $Q, x=-\frac{3}{4}$.

Substituting $x=-\frac{3}{4}$ into $y=\frac{36}{x}$ gives
$y=\frac{36}{\left(-\frac{3}{4}\right)}=-36\left(\frac{4}{3}\right)=-48$.

Hence the coordinates of Q are $\left(-\frac{3}{4},-48\right)$.
© Pearson Education Ltd 2008

Solutionbank FP1

Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 7

Question:

A rectangular hyperbola H has equation $x y=9$. The lines l_{1} and l_{2} are tangents to H. The gradients of l_{1} and l_{2} are both $-\frac{1}{4}$. Find the equations of l_{1} and l_{2}.

Solution:

$H: x y=9 \Rightarrow y=9 x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-9 x^{-2}=-\frac{9}{x^{2}}$
Gradients of tangent lines l_{1} and l_{2} are both $-\frac{1}{4}$ implies
$-\frac{9}{x^{2}}=-\frac{1}{4}$
$\Rightarrow x^{2}=36$
$\Rightarrow x= \pm \sqrt{36}$
$\Rightarrow x= \pm 6$
When $x=6, \quad 6 y=9 \quad \Rightarrow y=\frac{9}{6}=\frac{3}{2} \quad \Rightarrow\left(6, \frac{3}{2}\right)$.
When $x=-6,-6 y=9 \Rightarrow y=\frac{9}{-6}=-\frac{3}{2} \Rightarrow\left(-6,-\frac{3}{2}\right)$.
$\operatorname{At}\left(6, \frac{3}{2}\right), m_{T}=-\frac{1}{4}$ and
T: $y-\frac{3}{2}=-\frac{1}{4}(x-6)$
T: $4 y-6=-1(x-6)$
T: $4 y-6=-x+6$
T: $x+4 y-12=0$
$\operatorname{At}\left(-6,-\frac{3}{2}\right), m_{T}=-\frac{1}{4}$ and
T: $y+\frac{3}{2}=-\frac{1}{4}(x+6)$
T: $4 y+6=-1(x+6)$
T: $4 y+6=-x-6$

T: $x+4 y+12=0$
The equations for l_{1} and l_{2} are $x+4 y-12=0$ and $x+4 y+12=0$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 8

Question:

The point P lies on the rectangular hyperbola $x y=c^{2}$, where $c>0$. The tangent to the rectangular hyperbola at the point $P\left(c t, \frac{c}{t}\right), t>0$, cuts the x-axis at the point X and cuts the y-axis at the point Y.
a Find, in terms of c and t, the coordinates of X and Y.
b Given that the area of the triangle $O X Y$ is 144 , find the exact value of c.

Solution:

a $H: x y=c^{2} \Rightarrow y=c^{2} x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}$

At $P\left(c t, \frac{c}{t}\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{(c t)^{2}}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}}$
$\mathbf{T}: y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) \quad$ (Now multiply both sides by t^{2}.)
$\mathbf{T}: t^{2} y-c t=-(x-c t)$
$\mathbf{T}: t^{2} y-c t=-x+c t$
$\mathbf{T}: x+t^{2} y=2 c t$
T cuts x-axis $\Rightarrow y=0 \Rightarrow x+t^{2}(0)=2 c t \Rightarrow x=2 c t$
\mathbf{T} cuts y-axis $\Rightarrow x=0 \Rightarrow 0+t^{2} y=2 c t \Rightarrow y=\frac{2 c t}{t^{2}}=\frac{2 c}{t}$
So the coordinates are $X(2 c t, 0)$ and $Y\left(0, \frac{2 c}{t}\right)$.
b

Using the sketch, are $\Delta O X Y=\frac{1}{2}(2 c t)\left(\frac{2 c}{t}\right)=\frac{4 c^{2} t}{2 t}=2 c^{2}$

As area $\triangle O X Y=144$, then $2 c^{2}=144 \Rightarrow c^{2}=72$
As $c>0, c=\sqrt{72}=\sqrt{36} \sqrt{2}=6 \sqrt{2}$.
Hence the exact value of c is $6 \sqrt{2}$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 9

Question:

The points $P\left(4 a t^{2}, 4 a t\right)$ and $Q\left(16 a t^{2}, 8 a t\right)$ lie on the parabola C with equation $y^{2}=4 a x$, where a is a positive constant.
a Show that an equation of the tangent to C at P is $2 t y=x+4 a t^{2}$.
b Hence, write down the equation of the tangent to C at Q.

The tangent to C at P meets the tangent to C at Q at the point R.
c Find, in terms of a and t, the coordinates of R.

Solution:

a $C: y^{2}=4 a x \Rightarrow y= \pm \sqrt{4 a x}=\sqrt{4} \sqrt{a} \sqrt{x}=2 \sqrt{a} x^{\frac{1}{2}}$
So $y=2 \sqrt{a} x^{\frac{1}{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{a}\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=\sqrt{a} x^{-\frac{1}{2}}$
So, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{x}}$
At $P\left(4 a t^{2}, 4 a t\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{a}}{\sqrt{4 a t^{2}}}=\frac{\sqrt{a}}{2 \sqrt{a} t}=\frac{1}{2 t}$.
$\mathbf{T}: y-4 a t=\frac{1}{2 t}\left(x-4 a t^{2}\right)$
T: $2 t y-8 a t^{2}=x-4 a t^{2}$

T: $2 t y=x-4 a t^{2}+8 a t^{2}$
$\mathbf{T}: 2 t y=x+4 a t^{2}$

The equation of the tangent to C at $P\left(4 a t^{2}, 4 a t\right)$ is $2 t y=x+4 a t^{2}$.
b P has mapped onto Q by replacing t by $2 t$, ie. $t \rightarrow 2 t$
So, $P\left(4 a t^{2}, 4 a t\right) \rightarrow Q\left(16 a t^{2}, 8 a t\right)=Q\left(4 a(2 t)^{2}, 4 a(2 t)\right)$
At Q, \mathbf{T} becomes $2(2 t) y=x+4 a(2 t)^{2}$
T: $2(2 t) y=x+4 a(2 t)^{2}$
$\mathbf{T}: 4 t y=x+4 a\left(4 t^{2}\right)$
$\mathbf{T}: 4 t y=x+16 a t^{2}$

The equation of the tangent to C at $Q\left(16 a t^{2}, 8 a t\right)$ is $4 t y=x+16 a t^{2}$.
c $\mathrm{T}_{P}: \quad 2 t y=x+4 a t^{2}$
$\mathrm{T}_{Q}: 4 t y=x+16 a t^{2}$
(2) - (1) gives
$2 t y=12 a t^{2}$
Hence, $y=\frac{12 a t^{2}}{2 t}=6 a t$.
Substituting this into (1) gives,
$2 t(6 a t)=x+4 a t^{2}$
$12 a t^{2}=x+4 a t^{2}$
$12 a t^{2}-4 a t^{2}=x$
Hence, $x=8 a t^{2}$.
The coordinates of R are $\left(8 a t^{2}, 6 a t\right)$.
© Pearson Education Ltd 2008

Solutionbank FP1
 Edexcel AS and A Level Modular Mathematics

Quadratic Equations

Exercise F, Question 10

Question:

A rectangular hyperbola H has Cartesian equation $x y=c^{2}, c>0$. The point $\left(c t, \frac{c}{t}\right)$, where $t \neq 0, t>0$ is a general point on H.
a Show that an equation an equation of the tangent to H at $\left(c t, \frac{c}{t}\right)$ is $x+t^{2} y=2 c t$.

The point P lies on H. The tangent to H at P cuts the x-axis at the point X with coordinates $(2 a, 0)$, where a is a constant.
b Use the answer to part a to show that P has coordinates $\left(a, \frac{c^{2}}{a}\right)$.

The point Q, which lies on H, has x-coordinate $2 a$.
c Find the y-coordinate of Q.
d Hence, find the equation of the line $O Q$, where O is the origin.
The lines $O Q$ and $X P$ meet at point R.
e Find, in terms of a, the x-coordinate of R.

Given that the line $O Q$ is perpendicular to the line $X P$,
f Show that $c^{2}=2 a^{2}$,
\mathbf{g} find, in terms of a, the y-coordinate of R.

Solution:

a $H: x y=c^{2} \Rightarrow y=c^{2} x^{-1}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-c^{2} x^{-2}=-\frac{c^{2}}{x^{2}}$
$\operatorname{At}\left(c t, \frac{c}{t}\right), m_{T}=\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{c^{2}}{(c t)^{2}}=-\frac{c^{2}}{c^{2} t^{2}}=-\frac{1}{t^{2}}$
$\mathbf{T}: y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) \quad$ (Now multiply both sides by t^{2}.)
$\mathbf{T}: t^{2} y-c t=-(x-c t)$
$\mathbf{T}: t^{2} y-c t=-x+c t$
$\mathbf{T}: x+t^{2} y=2 c t$

An equation of a tangent to H at $\left(c t, \frac{c}{t}\right)$ is $x+t^{2} y=2 c t$.
b T passes through $X(2 a, 0)$, so substitute $x=2 a, y=0$ into \mathbf{T}.
$(2 a)+t^{2}(0)=2 c t \Rightarrow 2 a=2 c t \Rightarrow \frac{2 a}{2 c}=t \Rightarrow t=\frac{a}{c}$

Substitute $t=\frac{a}{c}$ into $\left(c t, \frac{c}{t}\right)$ gives
$P\left(c\left(\frac{a}{c}\right), \frac{c}{\left(\frac{a}{c}\right)}\right)=P\left(a, \frac{c^{2}}{a}\right)$.
Hence P has coordinates $P\left(a, \frac{c^{2}}{a}\right)$.
c Substituting $x=2 a$ into the curve H gives
(2a) $y=c^{2} \Rightarrow y=\frac{c^{2}}{2 a}$.
The y-coordinate of Q is $y=\frac{c^{2}}{2 a}$.
d The coordinates of O and Q are $(0,0)$ and $\left(2 a, \frac{c^{2}}{2 a}\right)$.
$m_{O Q}=\frac{\frac{c^{2}}{2 a}-0}{2 a-0}=\frac{c^{2}}{2 a(2 a)}=\frac{c^{2}}{4 a^{2}}$
$O Q: y-0=\frac{c^{2}}{4 a^{2}}(x-0)$
$O Q: y=\frac{c^{2} x}{4 a^{2}}$.
The equation of $O Q$ is $y=\frac{c^{2} x}{4 a^{2}}$.
e The coordinates of X and P are $(2 a, 0)$ and $\left(a, \frac{c^{2}}{a}\right)$.
$m_{X P}=\frac{\frac{c^{2}}{a}-0}{a-2 a}=\frac{\frac{c^{2}}{a}}{-a}=-\frac{c^{2}}{a^{2}}$
$X P: y-0=-\frac{c^{2}}{a^{2}}(x-2 a)$
$X P: y=-\frac{c^{2}}{a^{2}}(x-2 a)$

Substituting (1) into (2) gives,
$\frac{c^{2} x}{4 a^{2}}=-\frac{c^{2}}{a^{2}}(x-2 a)$
Cancelling $\frac{c^{2}}{a^{2}}$ gives,
$\frac{x}{4}=-(x-2 a)$
$\frac{x}{4}=-x+2 a$
$\frac{5 x}{4}=2 a$
$x=\frac{4(2 a)}{5}=\frac{8 a}{5}$
The x-coordinate of R is $\frac{8 a}{5}$.
f From earlier parts, $m_{O Q}=\frac{c^{2}}{4 a^{2}}$ and $m_{X P}=-\frac{c^{2}}{a^{2}}$
$O P$ is perpendicular to $X P \Rightarrow m_{O Q} \times m_{X P}=-1$, gives
$m_{O Q} \times m_{X P}=\left(\frac{c^{2}}{4 a^{2}}\right)\left(-\frac{c^{2}}{a^{2}}\right)=\frac{-c^{4}}{4 a^{4}}=-1$
$-c^{4}=-4 a^{4} \Rightarrow c^{4}=4 a^{4} \Rightarrow\left(c^{2}\right)^{2}=4 a^{4}$
$c^{2}=\sqrt{4 a^{4}}=\sqrt{4} \sqrt{a^{4}}=2 a^{2}$.
Hence, $c^{2}=2 a^{2}$, as required.
g At $R, x=\frac{8 a}{5}$. Substituting $x=\frac{8 a}{5}$ into $y=\frac{c^{2} x}{4 a^{2}}$ gives,
$y=\frac{c^{2}}{4 a^{2}}\left(\frac{8 a}{5}\right)=\frac{8 a c^{2}}{20 a^{2}}$
and using the $c^{2}=2 a^{2}$ gives,
$y=\frac{8 a\left(2 a^{2}\right)}{20 a^{2}}=\frac{16 a^{3}}{20 a^{2}}=\frac{4 a}{5}$.
The y -coordinate of R is $\frac{4 a}{5}$.
© Pearson Education Ltd 2008

[^0]: © Pearson Education Ltd 2008

