Quadratic Equations

Exercise A, Question 1

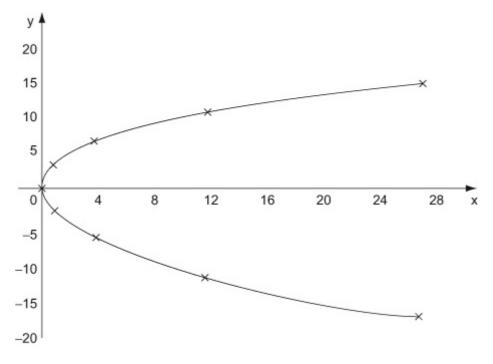
Question:

A curve is given by the parametric equations $x = 2t^2$, y = 4t. $t \in \mathbb{R}$. Copy and complete the following table and draw a graph of the curve for $-4 \le t \le 4$.

t	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	4
$x = 2t^2$	32					0	0.5				32
y = 4t	-16						2				16

Solution:

t	-4	-3	-2	-1	-0.5	0	0.5	1	2	3	4
$x = 2t^2$	32	18	8	2	0.5	0	0.5	2	8	18	32
y = 4t	-16	-12	-8	-4	-2	0	2	4	8	12	16



Quadratic Equations

Exercise A, Question 2

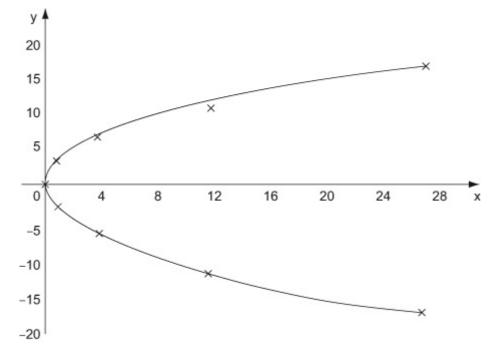
Question:

A curve is given by the parametric equations $x = 3t^2$, y = 6t. $t \in \mathbb{R}$. Copy and complete the following table and draw a graph of the curve for $-3 \le t \le 3$.

t	-3	-2	-1	-0.5	0	0.5	1	2	3
$x = 3t^2$					0				
y = 6t					0				

Solution:

t	-3	-2	-1	-0.5	0	0.5	1	2	3
$x = 3t^2$	27	12	3	0.75	0	0.75	3	12	27
y = 6t	-18	-12	-6	-3	0	3	6	12	18



Quadratic Equations

Exercise A, Question 3

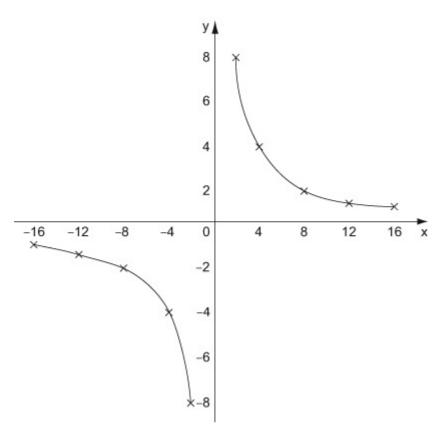
Question:

A curve is given by the parametric equations x = 4t, $y = \frac{4}{t}$. $t \in \mathbb{R}$, $t \neq 0$. Copy and complete the following table and draw a graph of the curve for $-4 \le t \le 4$.

t	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
x = 4t	-16				-2					
$y=\frac{4}{t}$	-1				-8					

Solution:

	t	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
х	x = 4t	-16	-12	-8	-4	-2	2	4	8	12	16
	$y = \frac{4}{t}$	-1	$-\frac{4}{3}$	-2	-4	-8	8	4	2	$\frac{4}{3}$	1



Quadratic Equations Exercise A, Question 4

Question:

Find the Cartesian equation of the curves given by these parametric equations.

a
$$x = 5t^2$$
, $y = 10t$
b $x = \frac{1}{2}t^2$, $y = t$
c $x = 50t^2$, $y = 100t$
d $x = \frac{1}{5}t^2$, $y = \frac{2}{5}t$
e $x = \frac{5}{2}t^2$, $y = 5t$
f $x = \sqrt{3}t^2$, $y = 2\sqrt{3}t$
g $x = 4t$, $y = 2t^2$
h $x = 6t$, $y = 3t^2$
Solution:

a
$$y = 10t$$

So $t = \frac{y}{10}$ (1)
 $x = 5t^2$ (2)

Substitute (1) into (2):

$$x = 5\left(\frac{y}{10}\right)^2$$

So
$$x = \frac{5y^2}{100}$$
 simplifies to $x = \frac{y^2}{20}$

Hence, the Cartesian equation is $y^2 = 20x$.

b
$$y = t$$
 (1)
 $x = \frac{1}{2}t^2$ (2)

Substitute (1) into (2):

$$x = \frac{1}{2}y^2$$

Hence, the Cartesian equation is $y^2 = 2x$.

c y = 100t

So
$$t = \frac{y}{100}$$
 (1)
 $x = 50t^2$ (2)

Substitute (1) into (2):

$$x = 50 \left(\frac{y}{100}\right)^2$$

So
$$x = \frac{50y^2}{10000}$$
 simplifies to $x = \frac{y^2}{200}$

Hence, the Cartesian equation is $y^2 = 200x$.

$$\mathbf{d} \qquad y = \frac{2}{5}t$$

So $t = \frac{5y}{2}$ (1)

$$x = \frac{1}{5}t^2$$
 (2)

Substitute (1) into (2):

$$x = \frac{1}{5} \left(\frac{5y}{2}\right)^2$$

So $x = \frac{25y^2}{20}$ simplifies to $x = \frac{5y^2}{4}$

Hence, the Cartesian equation is $y^2 = \frac{4}{5}x$.

$$e \quad y = 5t$$

So
$$t = \frac{y}{5}$$
 (1)

$$x = \frac{5}{2}t^2$$
 (2)

Substitute (1) into (2):

$$x = \frac{5}{2} \left(\frac{y}{5}\right)^2$$

So $x = \frac{5y^2}{50}$ simplifies to $x = \frac{y^2}{10}$

Hence, the Cartesian equation is $y^2 = 10x$.

$$f y = 2\sqrt{3}t$$

So $t = \frac{y}{2\sqrt{3}}$ (1)
 $x = \sqrt{3}t^2$ (2)

Substitute (1) into (2):

$$x = \sqrt{3} \left(\frac{y}{2\sqrt{3}}\right)^2$$

So
$$x = \frac{\sqrt{3}y^2}{12}$$
 gives $y = \frac{12x}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

Hence, the Cartesian equation is $y^2 = 4\sqrt{3}x$.

$$\mathbf{g} \qquad x = 4t$$

So $t = \frac{x}{4}$ (1)

$$y = 2t^2$$
 (2)

Substitute (1) into (2):

$$y = 2\left(\frac{x}{4}\right)^2$$

So
$$y = \frac{2x^2}{16}$$
 simplifies to $y = \frac{x^2}{8}$

Hence, the Cartesian equation is $x^2 = 8y$.

$$\mathbf{h} \qquad x = 6t$$

So $t = \frac{x}{6}$ (1)

$$y = 3t^2$$
 (2)

Substitute (1) into (2):

$$y = 3\left(\frac{x}{6}\right)^2$$

So $y = \frac{3x^2}{36}$ simplifies to $y =$

Hence, the Cartesian equation is $x^2 = 12y$.

 $\frac{x^2}{12}$

Quadratic Equations Exercise A, Question 5

Question:

Find the Cartesian equation of the curves given by these parametric equations.

a
$$x = t$$
, $y = \frac{1}{t}$, $t \neq 0$
b $x = 7t$, $y = \frac{7}{t}$, $t \neq 0$
c $x = 3\sqrt{5}t$, $y = \frac{3\sqrt{5}}{t}$, $t \neq 0$
d $x = \frac{t}{5}$, $y = \frac{1}{5t}$, $t \neq 0$

Solution:

a
$$xy = t \times \left(\frac{1}{t}\right)$$

 $xy = \frac{t}{t}$

Hence, the Cartesian equation is xy = 1.

b
$$xy = 7t \times \left(\frac{7}{t}\right)$$

 $xy = \frac{49t}{t}$

Hence, the Cartesian equation is xy = 49.

c
$$xy = 3\sqrt{5}t \times \left(\frac{3\sqrt{5}}{t}\right)$$

 $xy = \frac{9(5)t}{t}$

Hence, the Cartesian equation is xy = 45.

$$\mathbf{d} \quad xy = \frac{t}{5} \times \left(\frac{1}{5t}\right)$$
$$xy = \frac{t}{25t}$$

Hence, the Cartesian equation is $xy = \frac{1}{25}$.

Quadratic Equations Exercise A, Question 6

Question:

A curve has parametric equations x = 3t, $y = \frac{3}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

a Find the Cartesian equation of the curve.

b Hence sketch this curve.

Solution:

a $xy = 3t \times \left(\frac{3}{t}\right)$

$$xy = \frac{9t}{t}$$

Hence, the Cartesian equation is xy = 9.

```
b
```



Quadratic Equations Exercise A, Question 7

Question:

A curve has parametric equations $x = \sqrt{2}t$, $y = \frac{\sqrt{2}}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

a Find the Cartesian equation of the curve.

b Hence sketch this curve.

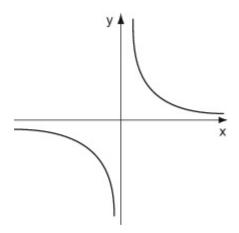
Solution:

a
$$xy = \sqrt{2}t \times \left(\frac{\sqrt{2}}{t}\right)$$

 $xy = \frac{2t}{t}$

Hence, the Cartesian equation is xy = 2.

b



Quadratic Equations Exercise B, Question 1

Question:

Find an equation of the parabola with

a focus (5, 0) and directrix x + 5 = 0,

b focus (8, 0) and directrix x + 8 = 0,

c focus (1, 0) and directrix x = -1,

d focus $\left(\frac{3}{2}, 0\right)$ and directrix $x = -\frac{3}{2}$,

e focus
$$\left(\frac{\sqrt{3}}{2}, 0\right)$$
 and directrix $x + \frac{\sqrt{3}}{2} = 0$.

Solution:

The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively.

- **a** focus (5, 0) and directrix x + 5 = 0.
- So a = 5 and $y^2 = 4(5)x$.

Hence parabola has equation $y^2 = 20x$.

```
b focus (8, 0) and directrix x + 8 = 0.
```

So
$$a = 8$$
 and $y^2 = 4(8)x$.

Hence parabola has equation $y^2 = 32x$.

c focus (1, 0) and directrix x = -1 giving x + 1 = 0.

So
$$a = 1$$
 and $y^2 = 4(1)x$.

Hence parabola has equation $y^2 = 4x$.

d focus
$$\left(\frac{3}{2}, 0\right)$$
 and directrix $x = -\frac{3}{2}$ giving $x + \frac{3}{2} = 0$.
So $a = \frac{3}{2}$ and $y^2 = 4\left(\frac{3}{2}\right)x$.

Hence parabola has equation $y^2 = 6x$.

e focus
$$\left(\frac{\sqrt{3}}{2}, 0\right)$$
 and directrix $x + \frac{\sqrt{3}}{2} = 0$
So $a = \frac{\sqrt{3}}{2}$ and $y^2 = 4\left(\frac{\sqrt{3}}{2}\right)x$.

Hence parabola has equation $y^2 = 2\sqrt{3}x$.

Quadratic Equations

Exercise B, Question 2

Question:

Find the coordinates of the focus, and an equation for the directrix of a parabola with these equations.

a $y^2 = 12x$

- **b** $y^2 = 20x$
- **c** $y^2 = 10x$
- **d** $y^2 = 4\sqrt{3}x$
- $\mathbf{e} \ y^2 = \sqrt{2} x$
- **f** $y^2 = 5\sqrt{2}x$

Solution:

The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively.

a
$$y^2 = 12x$$
. So $4a = 12$, gives $a = \frac{12}{4} = 3$.

So the focus has coordinates (3, 0) and the directrix has equation x + 3 = 0.

b
$$y^2 = 20x$$
. So $4a = 20$, gives $a = \frac{20}{4} = 5$.

So the focus has coordinates (5, 0) and the directrix has equation x + 5 = 0.

c
$$y^2 = 10x$$
. So $4a = 10$, gives $a = \frac{10}{4} = \frac{5}{2}$.

So the focus has coordinates $\left(\frac{5}{2}, 0\right)$ and the directrix has equation $x + \frac{5}{2} = 0$.

d
$$y^2 = 4\sqrt{3}x$$
. So $4a = 4\sqrt{3}$, gives $a = \frac{4\sqrt{3}}{4} = \sqrt{3}$.

So the focus has coordinates $(\sqrt{3}, 0)$ and the directrix has equation $x + \sqrt{3} = 0$.

e
$$y^2 = \sqrt{2}x$$
. So $4a = \sqrt{2}$, gives $a = \frac{\sqrt{2}}{4}$.

So the focus has coordinates $\left(\frac{\sqrt{2}}{4}, 0\right)$ and the directrix has equation $x + \frac{\sqrt{2}}{4} = 0$.

f
$$y^2 = 5\sqrt{2}x$$
. So $4a = 5\sqrt{2}$, gives $a = \frac{5\sqrt{2}}{4}$.

So the focus has coordinates $\left(\frac{5\sqrt{2}}{4}, 0\right)$ and the directrix has equation $x + \frac{5\sqrt{2}}{4} = 0$.

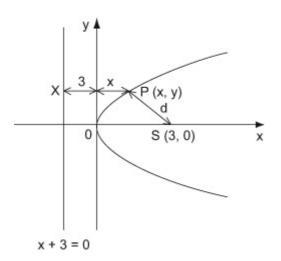
© Pearson Education Ltd 2008

Quadratic Equations Exercise B, Question 3

Question:

A point P(x, y) obeys a rule such that the distance of *P* to the point (3, 0) is the same as the distance of *P* to the straight line x + 3 = 0. Prove that the locus of *P* has an equation of the form $y^2 = 4ax$, stating the value of the constant *a*.

Solution:



From sketch the locus satisfies SP = XP.

Therefore, $SP^2 = XP^2$. So, $(x-3)^2 + (y-0)^2 = (x--3)^2$.

$$x^{2}-6x+9+y^{2} = x^{2}+6x+9$$

-6x+y^{2} = 6x

which simplifies to $y^2 = 12x$.

So, the locus of *P* has an equation of the form $y^2 = 4ax$, where a = 3.

© Pearson Education Ltd 2008

The (shortest) distance of *P* to the line x + 3 = 0 is the distance *XP*.

The distance *SP* is the same as the distance *XP*.

The line *XP* is horizontal and has distance XP = x + 3.

The locus of *P* is the curve shown.

This means the distance *SP* is the same as the distance *XP*.

Use $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$ on $SP^2 = XP^2$, where S(3, 0), P(x, y), and X(-3, y).

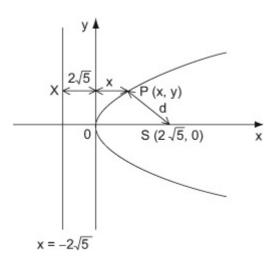
This is in the form $y^2 = 4ax$. So 4a = 12, gives $a = \frac{12}{4} = 3$.

Quadratic Equations Exercise B, Question 4

Question:

A point P(x, y) obeys a rule such that the distance of *P* to the point $(2\sqrt{5}, 0)$ is the same as the distance of *P* to the straight line $x = -2\sqrt{5}$. Prove that the locus of *P* has an equation of the form $y^2 = 4ax$, stating the value of the constant *a*.

Solution:



From sketch the locus satisfies SP = XP.

Therefore, $SP^2 = XP^2$. So, $(x - 2\sqrt{5})^2 + (y - 0)^2 = (x - 2\sqrt{5})^2$. $x^2 - 4\sqrt{5}x + 20 + y^2 = x^2 + 4\sqrt{5}x + 20$

 $-4\sqrt{5}x + y^2 = 4\sqrt{5}x$ which simplifies to $y^2 = 8\sqrt{5}x$.

So, the locus of *P* has an equation of the form $y^2 = 4ax$, where $a = 2\sqrt{5}$.

© Pearson Education Ltd 2008

The (shortest) distance of *P* to the line $x = -2\sqrt{5}$ or $x + 2\sqrt{5} = 0$ is the distance *XP*.

The distance *SP* is the same as the distance *XP*.

The line *XP* is horizontal and has distance $XP = x + 2\sqrt{5}$.

The locus of P is the curve shown.

This means the distance *SP* is the same as the distance *XP*.

Use
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
 on $SP^2 = XP^2$,
where $S(2\sqrt{5}, 0)$, $P(x, y)$, and $X(-2\sqrt{5}, y)$.

This is in the form $y^2 = 4ax$. So $4a = 8\sqrt{5}$, gives $a = \frac{8\sqrt{5}}{4} = 2\sqrt{5}$.

Quadratic Equations Exercise B, Question 5

Question:

A point P(x, y) obeys a rule such that the distance of *P* to the point (0, 2) is the same as the distance of *P* to the straight line y = -2.

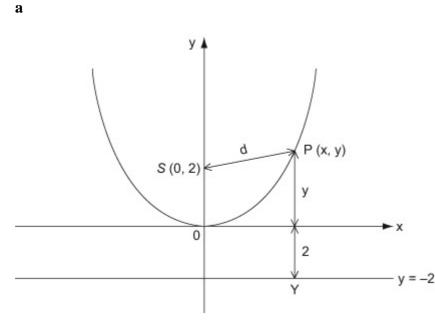
a Prove that the locus of *P* has an equation of the form $y = kx^2$, stating the value of the constant *k*.

Given that the locus of P is a parabola,

b state the coordinates of the focus of P, and an equation of the directrix to P,

c sketch the locus of P with its focus and its directrix.

Solution:



The (shortest) distance of *P* to the line y = -2 is the distance *YP*.

The distance *SP* is the same as the distance *YP*.

The line *YP* is vertical and has distance YP = y + 2.

The locus of P is the curve shown.

From sketch the locus satisfies SP = YP.

Therefore, $SP^2 = YP^2$. So, $(x - 0)^2 + (y - 2)^2 = (y - -2)^2$.

$$x^{2} + y^{2} - 4y + 4 = y^{2} + 4y + 4$$

 $x^{2} - 4y = 4y$

which simplifies to $x^2 = 8y$ and then $y = \frac{1}{8}x^2$. So, the locus of *P* has an equation of the form $y = \frac{1}{8}x^2$, where This means the distance *SP* is the same as the distance *YP*.

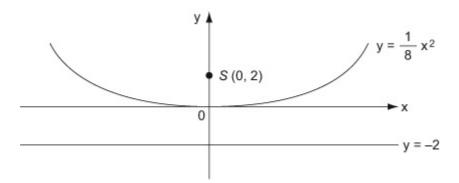
Use $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$ on $SP^2 = YP^2$, where S(0, 2), P(x, y), and Y(x, -2).

$$k = \frac{1}{8}.$$

b The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively. Therefore it follows that the focus and directrix of a parabola with equation $x^2 = 4ay$, are (0, a) and y + a = 0 respectively.

So the focus has coordinates (0, 2) and the directrix has equation $x^2 = 8y$ is in the form $x^2 = 4ay$. y + 2 = 0. So 4a = 8, gives $a = \frac{8}{4} = 2$.

С



Quadratic Equations Exercise C, Question 1

Question:

The line y = 2x - 3 meets the parabola $y^2 = 3x$ at the points *P* and *Q*.

Find the coordinates of P and Q.

Solution:

Line: y = 2x - 3 (1)

Curve: $y^2 = 3x$ (2)

Substituting (1) into (2) gives

 $(2x-3)^{2} = 3x$ (2x-3)(2x-3) = 3x $4x^{2} - 12x + 9 = 3x$ $4x^{2} - 15x + 9 = 0$ (x-3)(4x-3) = 0 $x = 3, \frac{3}{4}$

When x = 3, y = 2(3) - 3 = 3

When $x = \frac{3}{4}$, $y = 2\left(\frac{3}{4}\right) - 3 = -\frac{3}{2}$

Hence the coordinates of *P* and *Q* are (3, 3) and $\left(\frac{3}{4}, -\frac{3}{2}\right)$.

Quadratic Equations Exercise C, Question 2

Laterense e, Ques

Question:

The line y = x + 6 meets the parabola $y^2 = 32x$ at the points *A* and *B*. Find the exact length *AB* giving your answer as a surd in its simplest form.

Solution:

Line: y = x + 6 (1)

Curve: $y^2 = 32x$ (2)

Substituting (1) into (2) gives

 $(x+6)^{2} = 32x$ (x+6)(x+6) = 32x x²+12x+36 = 32x x²-20x+36 = 0 (x-2)(x-18) = 0 x = 2, 18

When x = 2, y = 2 + 6 = 8.

When x = 18, y = 18 + 6 = 24.

Hence the coordinates of *A* and *B* are (2, 8) and (18, 24).

$$AB = \sqrt{(18-2)^2 + (24-8)^2} \text{ Use } d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

= $\sqrt{16^2 + 16^2}$
= $\sqrt{2(16)^2}$
= $16\sqrt{2}$

Hence the exact length *AB* is $16\sqrt{2}$.

Quadratic Equations Exercise C, Question 3

Question:

The line y = x - 20 meets the parabola $y^2 = 10x$ at the points *A* and *B*. Find the coordinates of *A* and *B*. The mid-point of *AB* is the point *M*. Find the coordinates of *M*.

Solution:

Line: y = x - 20 (1) Curve: $y^2 = 10x$ (2)

Substituting (1) into (2) gives

 $(x-20)^{2} = 10x$ (x-20)(x-20) = 10x $x^{2}-40x+400 = 10x$ $x^{2}-50x+400 = 0$ (x-10)(x-40) = 0 x = 10,40

When x = 10, y = 10 - 20 = -10.

When x = 40, y = 40 - 20 = 20.

Hence the coordinates of A and B are (10, -10) and (40, 20).

The midpoint of A and B is $\left(\frac{10+40}{2}, \frac{-10+20}{2}\right) = (25, 5)$. Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Hence the coordinates of M are (25, 5).

Quadratic Equations Exercise C, Question 4

Question:

The parabola *C* has parametric equations $x = 6t^2$, y = 12t. The focus to *C* is at the point *S*.

a Find a Cartesian equation of *C*.

b State the coordinates of S and the equation of the directrix to C.

c Sketch the graph of *C*.

The points P and Q are both at a distance 9 units away from the directrix of the parabola.

d State the distance PS.

e Find the exact length PQ, giving your answer as a surd in its simplest form.

f Find the area of the triangle *PQS*, giving your answer in the form $k\sqrt{2}$, where k is an integer.

Solution:

a y = 12t

So
$$t = \frac{y}{12}$$
 (1)

$$x = 6t^2 \qquad (2)$$

Substitute (1) into (2):

$$x = 6\left(\frac{y}{12}\right)^2$$

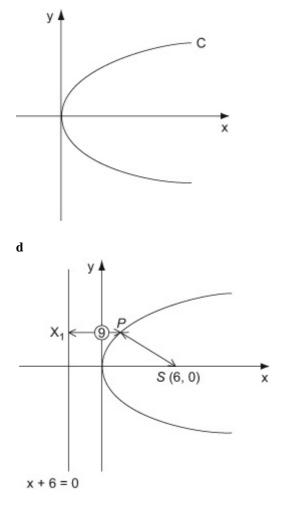
So $x = \frac{6y^2}{144}$ simplifies to $x = \frac{y^2}{24}$

Hence, the Cartesian equation is $y^2 = 24x$.

b
$$y^2 = 24x$$
. So $4a = 24$, gives $a = \frac{24}{4} = 6$.

So the focus *S*, has coordinates (6, 0) and the directrix has equation x + 6 = 0.

c



The (shortest) distance of *P* to the line x + 6 = 0 is the distance X_1P .

Therefore $X_1P = 9$. The distance *PS* is the same as the distance X_1P , by the focus-directrix property.

Hence the distance PS = 9.

e Using diagram in (d), the *x*-coordinate of *P* and *Q* is x = 9 - 6 = 3.

When x = 3, $y^2 = 24(3) = 72$.

Hence $y = \pm \sqrt{72}$ $= \pm \sqrt{36} \sqrt{2}$ $= \pm 6\sqrt{2}$

So the coordinates are of P and Q are $(3, 6\sqrt{2})$ and $(3, -6\sqrt{2})$.

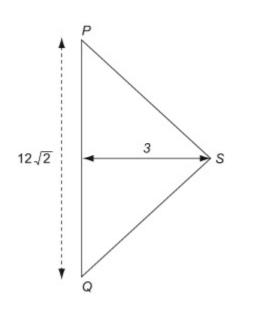
As P and Q are vertically above each other then

 $PQ = 6\sqrt{2} - -6\sqrt{2}$ $= 12\sqrt{2}.$

Hence, the distance PQ is $12\sqrt{2}$.

f Drawing a diagram of the triangle *PQS* gives:

The *x*-coordinate of *P* and *Q* is 3 and the *x*-coordinate of *S* is 6.



Hence the height of the triangle is height = 6 - 3 = 3. The length of the base is $12\sqrt{2}$.

Area
$$= \frac{1}{2}(12\sqrt{2})(3)$$

 $= \frac{1}{2}(36\sqrt{2})$
 $= 18\sqrt{2}.$

Therefore the area of the triangle is $18\sqrt{2}$, where k = 18.

Quadratic Equations Exercise C, Question 5

Question:

The parabola C has equation $y^2 = 4ax$, where a is a constant. The point $\left(\frac{5}{4}t^2, \frac{5}{2}t\right)$ is a general point on C.

a Find a Cartesian equation of *C*.

The point *P* lies on *C* with *y*-coordinate 5.

b Find the *x*-coordinate of *P*.

The point *Q* lies on the directrix of *C* where y = 3. The line *l* passes through the points *P* and *Q*.

c Find the coordinates of *Q*.

d Find an equation for *l*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

Solution:

a
$$P\left(\frac{5}{4}t^2, \frac{5}{2}t\right)$$
. Substituting $x = \frac{5}{4}t^2$ and $y = \frac{5}{2}t$ into $y^2 = 4ax$ gives,

$$\left(\frac{5}{2}t\right)^2 = 4a\left(\frac{5}{4}t^2\right) \Rightarrow \frac{25t^2}{4} = 5at^2 \Rightarrow \frac{25}{4} = 5a \Rightarrow \frac{5}{4} = a$$

When
$$a = \frac{5}{4}$$
, $y^2 = 4\left(\frac{5}{4}\right)x \Rightarrow y^2 = 5x$

The Cartesian equation of *C* is $y^2 = 5x$.

b When
$$y = 5$$
, $(5)^2 = 5x \Rightarrow \frac{25}{5} = x \Rightarrow x = 5$.

The *x*-coordinate of *P* is 5.

c As $a = \frac{5}{4}$, the equation of the directrix of *C* is $x + \frac{5}{4} = 0$ or $x = -\frac{5}{4}$.

Therefore the coordinates of Q are $\left(-\frac{5}{4},3\right)$.

d The coordinates of *P* and *Q* are (5, 5) and $\left(-\frac{5}{4}, 3\right)$.

$$m_l = m_{PQ} = \frac{3-5}{-\frac{5}{4}-5} = \frac{-2}{-\frac{25}{4}} = \frac{8}{25}$$

 $l: y-5 = \frac{8}{25}(x-5)$ l: 25y - 125 = 8(x-5) l: 25y - 125 = 8x - 40 l: 0 = 8x - 25y - 40 + 125l: 0 = 8x - 25y + 85

An equation for l is 8x - 25y + 85 = 0.

Quadratic Equations Exercise C, Question 6

Question:

A parabola *C* has equation $y^2 = 4x$. The point *S* is the focus to *C*.

a Find the coordinates of *S*.

The point P with y-coordinate 4 lies on C.

b Find the *x*-coordinate of *P*.

The line *l* passes through *S* and *P*.

c Find an equation for *l*, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

The line l meets C again at the point Q.

d Find the coordinates of Q.

e Find the distance of the directrix of C to the point Q.

Solution:

a
$$y^2 = 4x$$
. So $4a = 4$, gives $a = \frac{4}{4} = 1$.

So the focus *S*, has coordinates (1, 0).

Also note that the directrix has equation x + 1 = 0.

b Substituting y = 4 into $y^2 = 4x$ gives:

$$16 = 4x \Longrightarrow x = \frac{16}{4} = 4.$$

The *x*-coordinate of *P* is 4.

c The line *l* goes through S(1, 0) and P(4, 4).

Hence gradient of $l, m_l = \frac{4-0}{4-1} = \frac{4}{3}$

Hence,
$$y - 0 = \frac{4}{3}(x - 1)$$

 $3y = 4(x - 1)$
 $3y = 4x - 4$
 $0 = 4x - 3y - 4$

The line *l* has equation 4x - 3y - 4 = 0.

d Line l: 4x - 3y - 4 = 0 (1) Curve : $y^2 = 4x$ (2)

Substituting (2) into (1) gives

$$y^{2} - 3y - 4 = 0$$

 $(y - 4)(y + 1) = 0$
 $y = 4, -1$

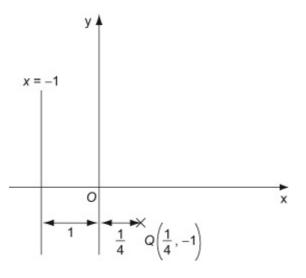
At *P*, it is already known that y = 4. So at *Q*, y = -1.

Substituting y = -1 into $y^2 = 4x$ gives

$$(-1)^2 = 4x \Longrightarrow x = \frac{1}{4}.$$

Hence the coordinates of Q are $\left(\frac{1}{4}, -1\right)$.

e The directrix of *C* has equation x + 1 = 0 or x = -1. *Q* has coordinates $\left(\frac{1}{4}, -1\right)$.



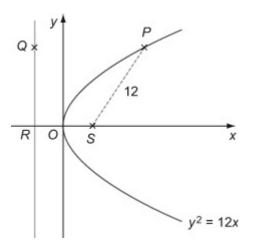
From the diagram, distance = $1 + \frac{1}{4} = \frac{5}{4}$.

Therefore the distance of the directrix of *C* to the point *Q* is $\frac{5}{4}$.

Quadratic Equations Exercise C, Question 7

Question:

The diagram shows the point *P* which lies on the parabola *C* with equation $y^2 = 12x$.



The point S is the focus of C. The points Q and R lie on the directrix to C. The line segment QP is parallel to the line segment RS as shown in the diagram. The distance of PS is 12 units.

a Find the coordinates of *R* and *S*.

b Hence find the exact coordinates of *P* and *Q*.

c Find the area of the quadrilateral *PQRS*, giving your answer in the form $k\sqrt{3}$, where k is an integer.

Solution:

a $y^2 = 12x$. So 4a = 12, gives $a = \frac{12}{4} = 3$.

Therefore the focus *S* has coordinates (3, 0) and an equation of the directrix of *C* is x + 3 = 0 or x = -3. The coordinates of *R* are (-3, 0) as *R* lies on the *x*-axis.

b The directrix has equation x = -3. The (shortest) distance of *P* to the directrix is the distance *PQ*. The distance *SP* = 12. The focus-directrix property implies that SP = PQ = 12.

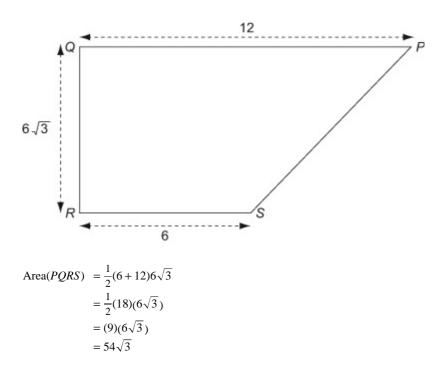
Therefore the *x*-coordinate of *P* is x = 12 - 3 = 9.

As *P* lies on *C*, when x = 9, $y^2 = 12(9) \Rightarrow y^2 = 108$

As
$$y > 0$$
, $y = \sqrt{108} = \sqrt{36}\sqrt{3} = 6\sqrt{3} \implies P(9, 6\sqrt{3})$

Hence the exact coordinates of P are $(9, 6\sqrt{3})$ and the coordinates of Q are $(-3, 6\sqrt{3})$.

с



The area of the quadrilateral *PQRS* is $54\sqrt{3}$ and k = 54.

Quadratic Equations Exercise C, Question 8

Question:

The points P(16, 8) and Q(4, b), where b < 0 lie on the parabola C with equation $y^2 = 4ax$.

a Find the values of *a* and *b*.

P and Q also lie on the line l. The mid-point of PQ is the point R.

b Find an equation of *l*, giving your answer in the form y = mx + c, where *m* and *c* are constants to be determined.

c Find the coordinates of *R*.

The line n is perpendicular to l and passes through R.

d Find an equation of *n*, giving your answer in the form y = mx + c, where *m* and *c* are constants to be determined.

The line n meets the parabola C at two points.

e Show that the *x*-coordinates of these two points can be written in the form $x = \lambda \pm \mu \sqrt{13}$, where λ and μ are integers to be determined.

Solution:

a P(16, 8). Substituting x = 16 and y = 8 into $y^2 = 4ax$ gives,

$$(8)^2 = 4a(16) \Rightarrow 64 = 64a \Rightarrow a = \frac{64}{64} = 1.$$

Q(4, b). Substituting x = 4, y = b and a = 1 into $y^2 = 4ax$ gives,

$$b^2 = 4(1)(4) = 16 \Rightarrow b = \pm\sqrt{16} \Rightarrow b = \pm 4$$
. As $b < 0, b = -4$.

Hence, a = 1, b = -4.

b The coordinates of P and Q are (16, 8) and (4, -4).

$$m_l = m_{PQ} = \frac{-4 - 8}{4 - 16} = \frac{-12}{-12} = 1$$

l: y - 8 = 1(x - 16)
l: y = x - 8

l has equation y = x - 8.

c *R* has coordinates
$$\left(\frac{16+4}{2}, \frac{8+-4}{2}\right) = (10, 2).$$

d As *n* is perpendicular to *l*, $m_n = -1$

n: y - 2 = -1(x - 10)

e Line n: y = -x + 12 (1)

Parabola $C: y^2 = 4x$ (2)

Substituting (1) into (2) gives

 $(-x + 12)^{2} = 4x$ $x^{2} - 12x - 12x + 144 = 4x$ $x^{2} - 28x + 144 = 0$ $(x - 14)^{2} - 196 + 144 = 0$ $(x - 14)^{2} - 52 = 0$ $(x - 14)^{2} = 52$ $x - 14 = \pm\sqrt{52}$ $x - 14 = \pm\sqrt{52}$ $x - 14 = \pm\sqrt{4}\sqrt{13}$ $x - 14 = \pm2\sqrt{13}$ $x = 14 \pm 2\sqrt{13}$

The *x* coordinates are $x = 14 \pm 2\sqrt{13}$.

Quadratic Equations Exercise D, Question 1

Question:

Find the equation of the tangent to the curve

a
$$y^2 = 4x$$
 at the point (16, 8)

b
$$y^2 = 8x$$
 at the point (4, $4\sqrt{2}$)

- **c** xy = 25 at the point (5, 5)
- **d** xy = 4 at the point where $x = \frac{1}{2}$
- **e** $y^2 = 7x$ at the point (7, -7)
- **f** xy = 16 at the point where $x = 2\sqrt{2}$.

Give your answers in the form ax + by + c = 0.

Solution:

a As y > 0 in the coordinates (16, 8), then

$$y^{2} = 4x \Rightarrow y = \sqrt{4x} = \sqrt{4}\sqrt{x} = 2x^{\frac{1}{2}}$$

So $y = 2x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2(\frac{1}{2})x^{-\frac{1}{2}} = x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{1}{\sqrt{x}}$
At (16, 8), $m_{T} = \frac{dy}{dx} = \frac{1}{\sqrt{16}} = \frac{1}{4}$.
T: $y - 8 = \frac{1}{4}(x - 16)$
T: $4y - 32 = x - 16$
T: $0 = x - 4y - 16 + 32$
T: $x - 4y + 16 = 0$
Therefore, the equation of the tangent is $x - 4y + 16 = 0$.

b As y > 0 in the coordinates $(4, 4\sqrt{2})$, then

 $y^2 = 8x \Rightarrow y = \sqrt{8x} = \sqrt{8}\sqrt{x} = \sqrt{4}\sqrt{2}\sqrt{x} = 2\sqrt{2}x^{\frac{1}{2}}$

So
$$y = 2\sqrt{2}x^{\frac{1}{2}}$$

 $\frac{dy}{dx} = 2\sqrt{2}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{2}x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{\sqrt{2}}{\sqrt{x}}$
At $(4, 4\sqrt{2}), m_T = \frac{dy}{dx} = \frac{\sqrt{2}}{\sqrt{4}} = \frac{\sqrt{2}}{2}$.
T: $y - 4\sqrt{2} = \frac{\sqrt{2}}{2}(x - 4)$
T: $2y - 8\sqrt{2} = \sqrt{2}(x - 4)$
T: $2y - 8\sqrt{2} = \sqrt{2}(x - 4)$
T: $2y - 8\sqrt{2} = \sqrt{2}x - 4\sqrt{2}$
T: $0 = \sqrt{2}x - 2y - 4\sqrt{2} + 8\sqrt{2}$
T: $\sqrt{2}x - 2y + 4\sqrt{2} = 0$

Therefore, the equation of the tangent is $\sqrt{2}x - 2y + 4\sqrt{2} = 0$.

c
$$xy = 25 \Rightarrow y = 25x^{-1}$$

 $\frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$
At (5, 5), $m_T = \frac{dy}{dx} = -\frac{25}{5^2} = -\frac{25}{25} = -1$
T: $y - 5 = -1(x - 5)$
T: $y - 5 = -x + 5$
T: $x + y - 5 - 5 = 0$
T: $x + y - 10 = 0$
Therefore, the equation of the tangent

gent is x + y - 10 = 0.

$$d xy = 4 \Rightarrow y = 4x^{-1}$$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$
At $x = \frac{1}{2}$, $m_T = \frac{dy}{dx} = -\frac{4}{\left(\frac{1}{2}\right)^2} = -\frac{4}{\left(\frac{1}{4}\right)} = -16$
When $x = \frac{1}{2}$, $y = \frac{4}{\left(\frac{1}{2}\right)} = 8 \Rightarrow \left(\frac{1}{2}, 8\right)$
T: $y - 8 = -16\left(x - \frac{1}{2}\right)$

T: y - 8 = -16x + 8

T: 16x + y - 8 - 8 = 0

T:
$$16x + y - 16 = 0$$

Therefore, the equation of the tangent is 16x + y - 16 = 0.

e As y < 0 in the coordinates (7, -7), then

$$y^{2} = 7x \Rightarrow y = -\sqrt{7x} = -\sqrt{7}\sqrt{x} = -\sqrt{7}x^{\frac{1}{2}}$$

So $y = -\sqrt{7}x^{\frac{1}{2}}$
$$\frac{dy}{dx} = -\sqrt{7}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = -\frac{\sqrt{7}}{2}x^{-\frac{1}{2}}$$

So, $\frac{dy}{dx} = -\frac{\sqrt{7}}{2\sqrt{x}}$
At (7, -7), $m_{T} = \frac{dy}{dx} = -\frac{\sqrt{7}}{2\sqrt{7}} = -\frac{1}{2}$.
T: $y + 7 = -\frac{1}{2}(x - 7)$
T: $2y + 14 = -1(x - 7)$
T: $2y + 14 = -x + 7$
T: $x + 2y + 14 - 7 = 0$
T: $x + 2y + 7 = 0$

Therefore, the equation of the tangent is x + 2y + 7 = 0.

$$f xy = 16 \Rightarrow y = 16x^{-1}$$

$$\frac{dy}{dx} = -16x^{-2} = -\frac{16}{x^2}$$
At $x = 2\sqrt{2}$, $m_T = \frac{dy}{dx} = -\frac{16}{(2\sqrt{2})^2} = -\frac{16}{8} = -2$
When $x = 2\sqrt{2}$, $y = \frac{16}{2\sqrt{2}} = \frac{8}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}\sqrt{2}} = 4\sqrt{2} \Rightarrow (2\sqrt{2}, 4\sqrt{2})$
T: $y - 4\sqrt{2} = -2(x - 2\sqrt{2})$
T: $y - 4\sqrt{2} = -2x + 4\sqrt{2}$
T: $2x + y - 4\sqrt{2} - 4\sqrt{2} = 0$
T: $2x + y - 8\sqrt{2} = 0$

Therefore, the equation of the tangent is $2x + y - 8\sqrt{2} = 0$.

Quadratic Equations Exercise D, Question 2

Question:

Find the equation of the normal to the curve

a $y^2 = 20x$ at the point where y = 10,

b
$$xy = 9$$
 at the point $\left(-\frac{3}{2}, -6\right)$.

Give your answers in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

1

Solution:

a Substituting y = 10 into $y^2 = 20x$ gives

$$(10)^2 = 20x \Rightarrow x = \frac{100}{20} = 5 \Rightarrow (5, 10)$$

As y > 0, then

$$y^{2} = 20x \Rightarrow y = \sqrt{20x} = \sqrt{20} \sqrt{x} = \sqrt{4} \sqrt{5} \sqrt{x} = 2\sqrt{5} x^{\frac{1}{2}}$$

So $y = 2\sqrt{5}x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2\sqrt{5}(\frac{1}{2})x^{-\frac{1}{2}} = \sqrt{5}x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{\sqrt{5}}{\sqrt{x}}$
At (5, 10), $m_{T} = \frac{dy}{dx} = \frac{\sqrt{5}}{\sqrt{5}} = 1$.
Gradient of tangent at (5, 10) is $m_{T} = 1$.
So gradient of normal is $m_{N} = -1$.
N: $y - 10 = -1(x - 5)$
N: $y - 10 = -x + 5$
N: $x + y - 10 - 5 = 0$

N: x + y - 15 = 0

Therefore, the equation of the normal is x + y - 15 = 0.

b $xy = 9 \Rightarrow y = 9x^{-1}$ $\frac{dy}{dx} = -9x^{-2} = -\frac{9}{x^2}$

At $x = -\frac{3}{2}$, $m_T = \frac{dy}{dx} = -\frac{9}{(-\frac{3}{2})^2} = -\frac{9}{(\frac{9}{4})} = -\frac{36}{9} = -4$ Gradient of tangent at $(-\frac{3}{2}, -6)$ is $m_T = -4$. So gradient of normal is $m_N = \frac{-1}{-4} = \frac{1}{4}$. N: $y + 6 = \frac{1}{4}(x + \frac{3}{2})$ N: $4y + 24 = x + \frac{3}{2}$ N: 8y + 48 = 2x + 3N: 0 = 2x - 8y + 3 - 48N: 0 = 2x - 8y - 45

Therefore, the equation of the normal is 2x - 8y - 45 = 0.

Quadratic Equations Exercise D, Question 3

Question:

The point P(4, 8) lies on the parabola with equation $y^2 = 4ax$. Find

a the value of *a*,

b an equation of the normal to C at P.

The normal to C at P cuts the parabola again at the point Q. Find

 \mathbf{c} the coordinates of Q,

d the length PQ, giving your answer as a simplified surd.

Solution:

a Substituting x = 4 and y = 8 into $y^2 = 4ax$ gives

$$(8)^2 = 4(a)(4) \Longrightarrow 64 = 16a \Longrightarrow a = \frac{64}{16} = 4$$

So, *a* = 4.

b When
$$a = 4$$
, $y^2 = 4(4)x \Rightarrow y^2 = 16x$.

For P(4, 8), y > 0, so

$$y^{2} = 16x \Rightarrow y = \sqrt{16x} = \sqrt{16} \sqrt{x} = 4\sqrt{x} = 4x^{\frac{1}{2}}$$

So $y = 4x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 4\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$
At $P(4, 8), m_{T} = \frac{dy}{dx} = \frac{2}{\sqrt{4}} = \frac{2}{2} = 1.$
Gradient of tangent at $P(4, 8)$ is $m_{T} = 1.$
So gradient of normal at $P(4, 8)$ is $m_{N} = -1.$
N: $y - 8 = -1(x - 4)$
N: $y - 8 = -x + 4$

N: y = -x + 4 + 8

N: y = -x + 12

Therefore, the equation of the normal to *C* at *P* is y = -x + 12.

c Normal **N:** y = -x + 12 (1)

Parabola: $y^2 = 16x$ (2)

Multiplying (1) by 16 gives

16y = -16x + 192

Substituting (2) into this equation gives

 $16y = -y^{2} + 192$ $y^{2} + 16y - 192 = 0$ (y + 24)(y - 8) = 0y = -24, 8

At *P*, it is already known that y = 8. So at *Q*, y = -24.

Substituting y = -24 into $y^2 = 16x$ gives

$$(-24)^2 = 16x \Rightarrow 576 = 16x \Rightarrow x = \frac{576}{16} = 36.$$

Hence the coordinates of Q are (36, -24).

d The coordinates of P and Q are (4, 8) and (36, -24).

$$AB = \sqrt{(36-4)^2 + (-24-8)^2} \text{ Use } d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

= $\sqrt{32^2 + (-32)^2}$
= $\sqrt{2(32)^2}$
= $\sqrt{2}\sqrt{(32)^2}$
= $32\sqrt{2}$

Hence the exact length *AB* is $32\sqrt{2}$.

Quadratic Equations Exercise D, Question 4

Question:

The point A(-2, -16) lies on the rectangular hyperbola H with equation xy = 32.

a Find an equation of the normal to *H* at *A*.

The normal to H at A meets H again at the point B.

b Find the coordinates of *B*.

Solution:

a $xy = 32 \Rightarrow y = 32x^{-1}$

$$\frac{dy}{dx} = -32x^{-2} = -\frac{32}{x^2}$$

At $A(-2, -16), m_T = \frac{dy}{dx} = -\frac{32}{2^2} = -\frac{32}{4} = -8$

Gradient of tangent at A(-2, -16) is $m_T = -8$.

So gradient of normal at A(-2, -16) is $m_N = \frac{-1}{-8} = \frac{1}{8}$.

- **N:** $y + 16 = \frac{1}{8}(x+2)$
- **N:** 8y + 128 = x + 2
- **N:** 0 = x 8y + 2 128
- **N:** 0 = x 8y 126

The equation of the normal to *H* at *A* is x - 8y - 126 = 0.

- **b** Normal N: x 8y 126 = 0 (1)
 - Hyperbola H: xy = 32 (2)

Rearranging (2) gives

$$y = \frac{32}{x}$$

Substituting this equation into (1) gives

$$x - 8\left(\frac{32}{x}\right) - 126 = 0$$
$$x - \left(\frac{256}{x}\right) - 126 = 0$$

Multiplying both sides by *x* gives

 $x^{2} - 256 - 126x = 0$ $x^{2} - 126x - 256 = 0$ (x - 128)(x + 2) = 0x = 128, -2

At *A*, it is already known that x = -2. So at *B*, x = 128.

Substituting x = 128 into $y = \frac{32}{x}$ gives

$$y = \frac{32}{128} = \frac{1}{4}.$$

Hence the coordinates of *B* are $\left(128, \frac{1}{4}\right)$.

Quadratic Equations Exercise D, Question 5

Question:

The points P(4, 12) and Q(-8, -6) lie on the rectangular hyperbola *H* with equation xy = 48.

a Show that an equation of the line PQ is 3x - 2y + 12 = 0.

The point A lies on H. The normal to H at A is parallel to the chord PQ.

b Find the exact coordinates of the two possible positions of A.

Solution:

a The points P and Q have coordinates P(4, 12) and Q(-8, -6).

Hence gradient of *PQ*, $m_{PQ} = \frac{-6 - 12}{-8 - 4} = \frac{-18}{-12} = \frac{3}{2}$

Hence, $y - 12 = \frac{3}{2}(x - 4)$ 2y - 24 = 3(x - 4) 2y - 24 = 3x - 12 0 = 3x - 2y - 12 + 240 = 3x - 2y + 12

The line *PQ* has equation 3x - 2y + 12 = 0.

b From part (a), the gradient of the chord PQ is $\frac{3}{2}$.

The normal to H at A is parallel to the chord PQ, implies that the gradient of the normal to H at A is $\frac{3}{2}$.

It follows that the gradient of the tangent to H at A is

$$m_T = \frac{-1}{m_N} = \frac{-1}{\left(\frac{3}{2}\right)} = -\frac{2}{3}$$

 $H: xy = 48 \Longrightarrow y = 48x^{-1}$

$$\frac{dy}{dx} = -48x^{-2} = -\frac{48}{x^2}$$

At A,
$$m_T = \frac{dy}{dx} = -\frac{48}{x^2} = -\frac{2}{3} \Rightarrow \frac{48}{x^2} = \frac{2}{3}$$

Hence, $2x^2 = 144 \Rightarrow x^2 = 72 \Rightarrow x = \pm\sqrt{72} \Rightarrow x = \pm 6\sqrt{2}$ Note: $\sqrt{72} = \sqrt{36}\sqrt{2} = 6\sqrt{2}$.

When $x = 6\sqrt{2} \Rightarrow y = \frac{48}{6\sqrt{2}} = \frac{8}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}\sqrt{2}} = 4\sqrt{2}.$

When $x = -6\sqrt{2} \Rightarrow y = \frac{48}{-6\sqrt{2}} = \frac{-8}{\sqrt{2}} = \frac{-8\sqrt{2}}{\sqrt{2}\sqrt{2}} = -4\sqrt{2}$.

Hence the possible exact coordinates of A are $(6\sqrt{2}, 4\sqrt{2})$ or $(-6\sqrt{2}, -4\sqrt{2})$.

Quadratic Equations Exercise D, Question 6

Question:

The curve *H* is defined by the equations $x = \sqrt{3}t$, $y = \frac{\sqrt{3}}{t}$, $t \in \mathbb{R}$, $t \neq 0$.

The point *P* lies on *H* with *x*-coordinate $2\sqrt{3}$. Find:

a a Cartesian equation for the curve *H*,

b an equation of the normal to H at P.

The normal to H at P meets H again at the point Q.

c Find the exact coordinates of Q.

Solution:

a $xy = \sqrt{3}t \times \left(\frac{\sqrt{3}}{t}\right)$ $xy = \frac{3t}{t}$

Hence, the Cartesian equation of *H* is xy = 3.

b
$$xy = 3 \Rightarrow y = 3x^{-1}$$

 $\frac{dy}{dx} = -3x^{-2} = -\frac{3}{x^2}$
At $x = 2\sqrt{3}$, $m_T = \frac{dy}{dx} = -\frac{3}{(2\sqrt{3})^2} = -\frac{3}{12} = -\frac{1}{4}$

Gradient of tangent at *P* is $m_T = -\frac{1}{4}$.

So gradient of normal at *P* is
$$m_N = \frac{-1}{\left(-\frac{1}{4}\right)} = 4.$$

At *P*, when
$$x = 2\sqrt{3}$$
, $\Rightarrow 2\sqrt{3} = \sqrt{3}t \Rightarrow t = \frac{2\sqrt{3}}{\sqrt{3}} = 2$
When $t = 2$, $y = \frac{\sqrt{3}}{2} \Rightarrow P\left(2\sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

N:
$$y - \frac{\sqrt{3}}{2} = 4(x - 2\sqrt{3})$$

N: $2y - \sqrt{3} = 8(x - 2\sqrt{3})$
N: $2y - \sqrt{3} = 8x - 16\sqrt{3}$
N: $0 = 8x - 2y - 16\sqrt{3} + \sqrt{3}$

N: 0 = $8x - 2y - 15\sqrt{3}$

The equation of the normal to *H* at *P* is $8x - 2y - 15\sqrt{3} = 0$.

c Normal N: $8x - 2y - 15\sqrt{3} = 0$ (1)

Hyperbola *H*: xy = 3 (2)

Rearranging (2) gives

$$y = \frac{3}{x}$$

Substituting this equation into (1) gives

$$8x - 2\left(\frac{3}{x}\right) - 15\sqrt{3} = 0$$
$$8x - \left(\frac{6}{x}\right) - 15\sqrt{3} = 0$$

Multiplying both sides by x gives

$$8x - \left(\frac{6}{x}\right) - 15\sqrt{3} = 0$$

$$8x^2 - 6 - 15\sqrt{3}x = 0$$

$$8x^2 - 15\sqrt{3}x - 6 = 0$$

At *P*, it is already known that $x = 2\sqrt{3}$, so $(x - 2\sqrt{3})$ is a factor of this quadratic equation. Hence,

$$(x - 2\sqrt{3})(8x + \sqrt{3}) = 0$$

$$x = 2\sqrt{3} (\text{at } P) \text{ or } x = -\frac{\sqrt{3}}{8} (\text{at } Q).$$

At P, when $x = -\frac{\sqrt{3}}{8}, \Rightarrow \frac{-\sqrt{3}}{8} = \sqrt{3}t \Rightarrow t = \frac{-\sqrt{3}}{8\sqrt{3}} = -\frac{1}{8}$
When $t = -\frac{1}{8}, y = \frac{\sqrt{3}}{\left(-\frac{1}{8}\right)} = -8\sqrt{3} \Rightarrow Q\left(-\frac{1}{8}\sqrt{3}, -8\sqrt{3}\right).$

Hence the coordinates of Q are $\left(-\frac{1}{8}\sqrt{3}, -8\sqrt{3}\right)$.

Quadratic Equations Exercise D, Question 7

Question:

The point $P(4t^2, 8t)$ lies on the parabola *C* with equation $y^2 = 16x$. The point *P* also lies on the rectangular hyperbola *H* with equation xy = 4.

a Find the value of *t*, and hence find the coordinates of *P*.

The normal to H at P meets the x-axis at the point N.

b Find the coordinates of *N*.

The tangent to C at P meets the x-axis at the point T.

c Find the coordinates of *T*.

d Hence, find the area of the triangle *NPT*.

Solution:

a Substituting $x = 4t^2$ and y = 8t into xy = 4 gives

$$(4t^{2})(8t) = 4 \Rightarrow 32t^{3} = 4 \Rightarrow t^{3} = \frac{4}{32} = \frac{1}{8}.$$

So $t = \sqrt[3]{\left(\frac{1}{8}\right)}.$
When $t = \frac{1}{2}, x = 4\left(\frac{1}{2}\right)^{2} = 1.$
When $t = \frac{1}{2}, y = 8\left(\frac{1}{2}\right) = 4.$
Hence the value of t is $\frac{1}{2}$ and P has coordinates $(1, 4)$.
b $xy = 4 \Rightarrow y = 4x^{-1}$

$$\frac{dy}{dx} = -4x^{-2} = -\frac{4}{x^2}$$

At $P(1, 4), m_T = \frac{dy}{dx} = -\frac{4}{(1)^2} = -\frac{4}{1} = -4$

Gradient of tangent at P(1, 4) is $m_T = -4$.

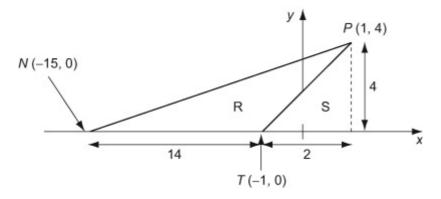
So gradient of normal at P(1, 4) is $m_N = \frac{-1}{-4} = \frac{1}{4}$.

N:
$$y - 4 = \frac{1}{4}(x - 1)$$

N: 4y - 16 = x - 1

N: 0 = x - 4y + 15N cuts x-axis $\Rightarrow y = 0 \Rightarrow 0 = x + 15 \Rightarrow x = -15$ Therefore, the coordinates of N are (-15, 0). c For P(1, 4), y > 0, so $y^2 = 16x \Rightarrow y = \sqrt{16x} = \sqrt{16} \sqrt{x} = 4\sqrt{x} = 4\sqrt{x} = 4x^{\frac{1}{2}}$ So $y = 4x^{\frac{1}{2}}$ $\frac{dy}{dx} = 4\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$ So, $\frac{dy}{dx} = \frac{2}{\sqrt{x}}$ At P(1, 4), $m_T = \frac{dy}{dx} = \frac{2}{\sqrt{1}} = \frac{2}{1} = 2$. Gradient of tangent at P(1, 4) is $m_T = 2$. T: y - 4 = 2(x - 1)T: y - 4 = 2x - 2T: 0 = 2x - y + 2T cuts x-axis $\Rightarrow y = 0 \Rightarrow 0 = 2x + 2 \Rightarrow x = -1$

Therefore, the coordinates of T are (-1, 0).



Using sketch drawn, Area \triangle NPT = Area(R + S) - Area(S)= $\frac{1}{2}(16)(4) - \frac{1}{2}(2)(4)$ = 32 - 4= 28

Therefore, Area \triangle NPT = 28

© Pearson Education Ltd 2008

Quadratic Equations Exercise E, Question 1

Question:

The point $P(3t^2, 6t)$ lies on the parabola C with equation $y^2 = 12x$.

a Show that an equation of the tangent to *C* at *P* is $yt = x + 3t^2$.

b Show that an equation of the normal to *C* at *P* is $xt + y = 3t^3 + 6t$.

Solution:

a *C*: $y^2 = 12x \Rightarrow y = \pm \sqrt{12x} = \pm \sqrt{4} \sqrt{3} \sqrt{x} = \pm 2\sqrt{3} x^{\frac{1}{2}}$ So $y = \pm 2\sqrt{3} x^{\frac{1}{2}}$ $\frac{dy}{dx} = \pm 2\sqrt{3} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \pm \sqrt{3} x^{-\frac{1}{2}}$ So, $\frac{dy}{dx} = \pm \frac{\sqrt{3}}{\sqrt{x}}$ At $P(3t^2, 6t)$, $m_T = \frac{dy}{dx} = \pm \frac{\sqrt{3}}{\sqrt{3t^2}} = \pm \frac{\sqrt{3}}{\sqrt{3}t} = \frac{1}{t}$. **T**: $y - 6t = \frac{1}{t} (x - 3t^2)$ **T**: $ty - 6t^2 = x - 3t^2$ **T**: $yt = x - 3t^2 + 6t^2$ **T**: $yt = x + 3t^2$ The equation of the tangent to *C* at *P* is $yt = x + 3t^2$.

b Gradient of tangent at $P(3t^2, 6t)$ is $m_T = \frac{1}{t}$.

So gradient of normal at $P(3t^2, 6t)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.

N: $y - 6t = -t(x - 3t^2)$

N:
$$y - 6t = -tx + 3t^3$$

N: $xt + y = 3t^3 + 6t$.

The equation of the normal to C at P is $xt + y = 3t^3 + 6t$.

Quadratic Equations Exercise E, Question 2

Question:

The point $P(6t, \frac{6}{t})$, $t \neq 0$, lies on the rectangular hyperbola *H* with equation xy = 36.

a Show that an equation of the tangent to *H* at *P* is $x + t^2y = 12t$.

b Show that an equation of the normal to *H* at *P* is $t^3x - ty = 6(t^4 - 1)$.

Solution:

a *H*: $xy = 36 \Rightarrow y = 36x^{-1}$

 $\frac{dy}{dx} = -36x^{-2} = -\frac{36}{x^2}$ At $P(6t, \frac{6}{t}), m_T = \frac{dy}{dx} = -\frac{36}{(6t)^2} = -\frac{36}{36t^2} = -\frac{1}{t^2}$ T: $y - \frac{6}{t} = -\frac{1}{t^2}(x - 6t)$ (Now multiply both sides by t^2 .)
T: $t^2y - 6t = -(x - 6t)$ T: $t^2y - 6t = -x + 6t$

T: $x + t^2 y = 6t + 6t$

T:
$$x + t^2 y = 12t$$

The equation of the tangent to *H* at *P* is $x + t^2y = 12t$.

b Gradient of tangent at $P(6t, \frac{6}{t})$ is $m_T = -\frac{1}{t^2}$.

So gradient of normal at $P(6t, \frac{6}{t})$ is $m_N = \frac{-1}{\left(-\frac{1}{t^2}\right)} = t^2$.

N: $y - \frac{6}{t} = t^2(x - 6t)$ (Now multiply both sides by *t*.) **N:** $ty - 6 = t^3(x - 6t)$ **N:** $ty - 6 = t^3x - 6t^4$ **N:** $6t^4 - 6 = t^3x - ty$

N: $6(t^4 - 1) = t^3 x - ty$

The equation of the normal to *H* at *P* is $t^3x - ty = 6(t^4 - 1)$.

Quadratic Equations Exercise E, Question 3

Question:

The point $P(5t^2, 10t)$ lies on the parabola C with equation $y^2 = 4ax$, where a is a constant and $t \neq 0$.

a Find the value of *a*.

b Show that an equation of the tangent to *C* at *P* is $yt = x + 5t^2$.

The tangent to C at P cuts the x-axis at the point X and the y-axis at the point Y. The point O is the origin of the coordinate system.

c Find, in terms of *t*, the area of the triangle *OXY*.

Solution:

a Substituting $x = 5t^2$ and y = 10t into $y^2 = 4ax$ gives

$$(10t)^2 = 4(a)(5t^2) \Rightarrow 100t^2 = 20t^2a \Rightarrow a = \frac{100t^2}{20t^2} = 5$$

So, *a* = 5.

b When
$$a = 5$$
, $y^2 = 4(5)x \Rightarrow y^2 = 20x$.
C: $y^2 = 20x \Rightarrow y = \pm \sqrt{20x} = \pm \sqrt{4} \sqrt{5} \sqrt{x} = \pm 2\sqrt{5} x^{\frac{1}{2}}$
So $y = \pm 2\sqrt{5} x^{\frac{1}{2}}$
 $\frac{dy}{dx} = \pm 2\sqrt{5} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \pm \sqrt{5} x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \pm \frac{\sqrt{5}}{\sqrt{x}}$
At $P(5t^2, \ 10t)$, $m_T = \frac{dy}{dx} = \frac{\sqrt{5}}{\sqrt{5t^2}} = \frac{\sqrt{5}}{\sqrt{5t}} = \frac{1}{t}$.
T: $y - 10t = \frac{1}{t}(x - 5t^2)$
T: $ty - 10t^2 = x - 5t^2$
T: $yt = x - 5t^2 + 10t^2$
T: $yt = x + 5t^2$
Therefore, the equation of the tangent to C at P is $yt = x + 5t^2$.

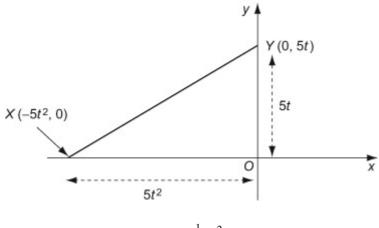
For $(at^2, 2at)$ on $y^2 = 4ax$

We always get
$$\frac{d}{dx}(y^2) = 4a$$

 $2y\frac{dy}{dx} = 4a\frac{dy}{dx} = \frac{2a}{y} = \frac{2a}{2ac} = \frac{1}{t}$
c T: $yt = x + 5t^2$
T cuts x-axis $\Rightarrow y = 0 \Rightarrow 0 = x + 5t^2 \Rightarrow x = -5t^2$
Hence the coordinates of X are $(-5t^2, 0)$.

T cuts *y*-axis $\Rightarrow x = 0 \Rightarrow yt = 5t^2 \Rightarrow y = 5t$

Hence the coordinates of Y are (0, 5t).



Using sketch drawn, Area $\triangle OXY = \frac{1}{2}(5t^2)(5t)$ $= \frac{25}{2}t^3$

Therefore, Area $\triangle OXY = \frac{25}{2}t^3$

Quadratic Equations Exercise E, Question 4

Question:

The point $P(at^2, 2at), t \neq 0$, lies on the parabola C with equation $y^2 = 4ax$, where a is a positive constant.

a Show that an equation of the tangent to *C* at *P* is $ty = x + at^2$.

The tangent to C at the point A and the tangent to C at the point B meet at the point with coordinates (-4a, 3a).

b Find, in terms of *a*, the coordinates of *A* and the coordinates of *B*.

Solution:

a C: $y^2 = 4ax \Rightarrow y = \pm \sqrt{4ax} = \sqrt{4}\sqrt{a}\sqrt{x} = 2\sqrt{a}x^{\frac{1}{2}}$ So $y = 2\sqrt{a}x^{\frac{1}{2}}$ $\frac{dy}{dx} = 2\sqrt{a}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{a}x^{-\frac{1}{2}}$ So, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$ At $P(at^2, 2at), m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{a}t} = \frac{1}{t}$. **T**: $y - 2at = \frac{1}{t}(x - at^2)$ **T**: $ty - 2at^2 = x - at^2$ **T**: $ty = x - at^2 + 2at^2$ **T**: $ty = x + at^2$

The equation of the tangent to *C* at *P* is $ty = x + at^2$.

b As the tangent **T** goes through (-4a, 3a), then substitute x = -4a and y = 3a into **T**.

 $t(3a) = -4a + at^{2}$ $0 = at^{2} - 3at - 4a$ $t^{2} - 3t - 4 = 0$ (t + 1)(t - 4) = 0 $t = -1, \ 4$ When $t = -1, \ x = a(-1)^{2} = a, \ y = 2a(-1) = -2a \Rightarrow (a, \ -2a).$ When $t = 4, \ x = a(4)^{2} = 16a, \ y = 2a(4) = 8a \Rightarrow (16a, \ 8a).$ The coordinates of A and B are $(a, \ -2a)$ and $(16a, \ 8a).$

Quadratic Equations Exercise E, Question 5

Question:

The point $P\left(4t, \frac{4}{t}\right), t \neq 0$, lies on the rectangular hyperbola H with equation xy = 16.

a Show that an equation of the tangent to *C* at *P* is $x + t^2y = 8t$.

The tangent to *H* at the point *A* and the tangent to *H* at the point *B* meet at the point *X* with *y*-coordinate 5. *X* lies on the directrix of the parabola *C* with equation $y^2 = 16x$.

b Write down the coordinates of *X*.

c Find the coordinates of *A* and *B*.

d Deduce the equations of the tangents to *H* which pass through *X*. Give your answers in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

Solution:

a *H*: $xy = 16 \Rightarrow y = 16x^{-1}$ $\frac{dy}{dx} = -16x^{-2} = -\frac{16}{x^2}$ At $P(4t, \frac{4}{t}), m_T = \frac{dy}{dx} = -\frac{16}{(4t)^2} = -\frac{16}{16t^2} = -\frac{1}{t^2}$ **T**: $y - \frac{4}{t} = -\frac{1}{t^2}(x - 4t)$ (Now multiply both sides by t^2 .) **T**: $t^2y - 4t = -(x - 4t)$ **T**: $t^2y - 4t = -x + 4t$ **T**: $x + t^2y = 4t + 4t$ **T**: $x + t^2y = 8t$ The equation of the tangent to *H* at *P* is $x + t^2y = 8t$.

b
$$y^2 = 16x$$
. So $4a = 16$, gives $a = \frac{16}{4} = 4$.

So the directrix has equation x + 4 = 0 or x = -4.

Therefore at *X*, x = -4 and as stated y = 5.

The coordinates of *X* are (-4, 5).

c T:
$$x + t^2 y = 8t$$

As the tangent **T** goes through (-4, 5), then substitute x = -4 and y = 5 into **T**.

 $(-4) + t^{2}(5) = 8t$ $5t^{2} - 4 = 8t$ $5t^{2} - 8t - 4 = 0$ (t - 2)(5t + 2) = 0 $t = 2, -\frac{2}{5}$

When t = 2, x = 4(2) = 8, $y = \frac{4}{2} = 2 \implies (8, 2)$.

When
$$t = -\frac{2}{5}$$
, $x = 4(-\frac{2}{5}) = -\frac{8}{5}$, $y = \frac{4}{\left(-\frac{2}{5}\right)} = -10 \Rightarrow (-\frac{8}{5}, -10)$.

The coordinates of *A* and *B* are (8, 2) and $\left(-\frac{8}{5}, -10\right)$.

d Substitute t = 2 and $t = -\frac{2}{5}$ into **T** to find the equations of the tangents to *H* that go through the point *X*. When t = 2, **T**: $x + 4y = 16 \Rightarrow x + 4y - 16 = 0$

When $t = -\frac{2}{5}$, **T**: $x + \left(-\frac{2}{5}\right)^2 y = 8\left(-\frac{2}{5}\right)$

T: $x + \frac{4}{25}y = -\frac{16}{5}$

- **T:** 25x + 4y = -80
- **T:** 25x + 4y + 80 = 0

Hence the equations of the tangents are x + 4y - 16 = 0 and 25x + 4y + 80 = 0.

Quadratic Equations Exercise E, Question 6

Question:

The point $P(at^2, 2at)$ lies on the parabola C with equation $y^2 = 4ax$, where a is a constant and $t \neq 0$. The tangent to C at P cuts the x-axis at the point A.

a Find, in terms of *a* and *t*, the coordinates of *A*.

The normal to C at P cuts the x-axis at the point B.

b Find, in terms of *a* and *t*, the coordinates of *B*.

c Hence find, in terms of *a* and *t*, the area of the triangle *APB*.

Solution:

a C:
$$y^2 = 4ax \Rightarrow y = \pm \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a} x^{\frac{1}{2}}$$

So $y = 2\sqrt{a} x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2\sqrt{a} \left(\frac{1}{2}\right) x^{-\frac{1}{2}} = \sqrt{a} x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$
At $P(at^2, 2at), m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{at}} = \frac{1}{t}$.
T: $y - 2at = \frac{1}{t} (x - at^2)$
T: $ty - 2at^2 = x - at^2$
T: $ty = x - at^2 + 2at^2$
T: $ty = x + at^2$
T cuts x-axis $\Rightarrow y = 0$. So,
 $0 = x + at^2 \Rightarrow x = -at^2$
The coordinates of A are $(-at^2, 0)$.
b Gradient of tangent at $P(at^2, 2at)$ is $m_T = \frac{1}{t}$.
So gradient of normal at $P(at^2, 2at)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.

N: $y - 2at = -t(x - at^2)$

N: $y - 2at = -tx + at^3$

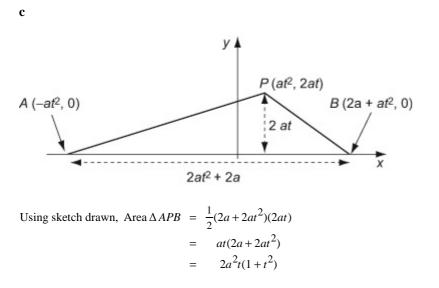
N cuts *x*-axis \Rightarrow *y* = 0. So,

 $0 - 2at = -tx + at^3$

 $tx = 2at + at^3$

 $x = 2a + at^2$

The coordinates of *B* are $(2a + at^2, 0)$.



Therefore, Area $\triangle APB = 2a^2t(1+t^2)$

Quadratic Equations Exercise E, Question 7

Question:

The point $P(2t^2, 4t)$ lies on the parabola C with equation $y^2 = 8x$.

a Show that an equation of the normal to *C* at *P* is $xt + y = 2t^3 + 4t$.

The normals to C at the points R, S and T meet at the point (12, 0).

b Find the coordinates of *R*, *S* and *T*.

c Deduce the equations of the normals to C which all pass through the point (12, 0).

Solution:

a C:
$$y^2 = 8x \Rightarrow y = \pm \sqrt{8x} = \sqrt{4}\sqrt{2}\sqrt{x} = 2\sqrt{2}x^{\frac{1}{2}}$$

So $y = 2\sqrt{2}x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2\sqrt{2}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{2}x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{\sqrt{2}}{\sqrt{x}}$
At $P(2t^2, 4t), m_T = \frac{dy}{dx} = \frac{\sqrt{2}}{\sqrt{2t^2}} = \frac{\sqrt{2}}{\sqrt{2}t} = \frac{1}{t}$.
Gradient of tangent at $P(2t^2, 4t)$ is $m_T = \frac{1}{t}$.
So gradient of normal at $P(2t^2, 4t)$ is $m_N = \frac{-1}{\left(\frac{1}{t}\right)} = -t$.
N: $y - 4t = -t(x - 2t^2)$

N: $y - 4t = -tx + 2t^3$

$$N: xt + y = 2t^3 + 4t.$$

The equation of the normal to *C* at *P* is $xt + y = 2t^3 + 4t$.

b As the normals go through (12, 0), then substitute x = 12 and y = 0 into **N**.

 $(12)t + 0 = 2t^3 + 4t$ $12t = 2t^3 + 4t$ $0 = 2t^3 + 4t - 12t$ $0 = 2t^3 - 8t$ $t^3 - 4t = 0$ $t(t^2 - 4) = 0$ t(t-2)(t+2) = 0t = 0, 2, -2When t = 0, $x = 2(0)^2 = 0$, $y = 4(0) = 0 \implies (0, 0)$. When t = 2, $x = 2(2)^2 = 8$, $y = 4(2) = 8 \implies (8, 8)$. When t = -2, $x = 2(-2)^2 = 8$, $y = 4(-2) = -8 \implies (8, -8)$. The coordinates of R, S and T are (0, 0), (8, 8) and (8, -8). **c** Substitute t = 0, 2, -2 into $xt + y = 2t^3 + 4t$. to find the equations of the normals to *H* that go through the point (12, 0). When t = 0, N: 0 + y = 0 + 0. $\Rightarrow y = 0$ When t = 2, N: x(2) + y = 2(8) + 4(2)**N:** 2x + y = 24N: 2x + y - 24 = 0When t = -2, N: x(-2) + y = 2(-8) + 4(-2)**N:** -2x + y = -24

N: 2x - y - 24 = 0

Hence the equations of the normals are y = 0, 2x + y - 24 = 0 and 2x - y - 24 = 0.

Quadratic Equations Exercise E, Question 8

Question:

The point $P(at^2, 2at)$ lies on the parabola *C* with equation $y^2 = 4ax$, where *a* is a positive constant and $t \neq 0$. The tangent to *C* at *P* meets the *y*-axis at *Q*.

a Find in terms of *a* and *t*, the coordinates of *Q*.

The point *S* is the focus of the parabola.

b State the coordinates of *S*.

c Show that *PQ* is perpendicular to *SQ*.

Solution:

a C:
$$y^2 = 4ax \Rightarrow y = \sqrt{4ax} = \sqrt{4}\sqrt{a}\sqrt{x} = 2\sqrt{a}x^{\frac{1}{2}}$$

So $y = 2\sqrt{a}x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2\sqrt{a}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{a}x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$
At $P(at^2, 2at), m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{a}t} = \frac{1}{t}$.
T: $y - 2at = \frac{1}{t}(x - at^2)$
T: $ty - 2at^2 = x - at^2$
T: $ty = x - at^2 + 2at^2$
T: $ty = x + at^2$
T meets $y - axis \Rightarrow x = 0$. So,
 $ty = 0 + at^2 \Rightarrow y = \frac{at^2}{t} \Rightarrow y = at$

The coordinates of Q are (0, at).

b The focus of a parabola with equation $y^2 = 4ax$ has coordinates (a, 0).

So, the coordinates of S are (a, 0).

c $P(at^2, 2at), Q(0, at)$ and S(a, 0).

$$m_{PQ} = \frac{at - 2at}{0 - at^2} = \frac{-at}{-at^2} = \frac{1}{t}.$$

$$m_{SQ} = \frac{0 - at}{a - 0} = -\frac{at}{a} = -t.$$

Therefore, $m_{PQ} \times m_{SQ} = \frac{1}{t} \times -t = -1.$

So PQ is perpendicular to SQ.

Quadratic Equations Exercise E, Question 9

Question:

The point $P(6t^2, 12t)$ lies on the parabola C with equation $y^2 = 24x$.

a Show that an equation of the tangent to the parabola at *P* is $ty = x + 6t^2$.

The point *X* has *y*-coordinate 9 and lies on the directrix of *C*.

b State the *x*-coordinate of *X*.

The tangent at the point B on C goes through point X.

c Find the possible coordinates of *B*.

Solution:

a C: $y^2 = 24x \Rightarrow y = \pm\sqrt{24x} = \sqrt{4}\sqrt{6}\sqrt{x} = 2\sqrt{6}x^{\frac{1}{2}}$ So $y = 2\sqrt{6}x^{\frac{1}{2}}$ $\frac{dy}{dx} = 2\sqrt{6}\left(\frac{1}{2}\right)x^{\frac{1}{2}} = \sqrt{6}x^{-\frac{1}{2}}$ So, $\frac{dy}{dx} = \frac{\sqrt{6}}{\sqrt{x}}$ At $P(6t^2, 12t), m_T = \frac{dy}{dx} = \frac{\sqrt{6}}{\sqrt{6t^2}} = \frac{\sqrt{6}}{\sqrt{6}t} = \frac{1}{t}$. **T**: $y - 12t = \frac{1}{t}(x - 6t^2)$ **T**: $ty - 12t^2 = x - 6t^2$ **T**: $ty = x - 6t^2 + 12t^2$ **T**: $ty = x + 6t^2$

The equation of the tangent to *C* at *P* is $ty = x + 6t^2$.

b
$$y^2 = 24x$$
. So $4a = 24$, gives $a = \frac{24}{4} = 6$.

So the directrix has equation x + 6 = 0 or x = -6.

Therefore at *X*, x = -6.

c T: $ty = x + 6t^2$ and the coordinates of X are (-6, 9).

As the tangent **T** goes through (-6, 9), then substitute x = -6 and y = 9 into **T**.

 $t(9) = -6 + 6t^{2}$ $0 = 6t^{2} - 9t - 6$ $2t^{2} - 3t - 2 = 0$ (t - 2)(2t + 1) = 0 $t = 2, -\frac{1}{2}$

When t = 2, $x = 6(2)^2 = 24$, $y = 12(2) = 24 \Rightarrow (24, 24)$.

When $t = -\frac{1}{2}$, $x = 6\left(-\frac{1}{2}\right)^2 = \frac{3}{2}$, $y = 12\left(-\frac{1}{2}\right) = -6 \Rightarrow \left(\frac{3}{2}, -6\right)$.

The possible coordinates of *B* are (24, 24) and $\left(\frac{3}{2}, -6\right)$.

Quadratic Equations Exercise F, Question 1

Question:

A parabola *C* has equation $y^2 = 12x$. The point *S* is the focus of *C*.

a Find the coordinates of *S*.

The line *l* with equation y = 3x intersects *C* at the point *P* where y > 0.

b Find the coordinates of *P*.

c Find the area of the triangle OPS, where O is the origin.

Solution:

a $y^2 = 12x$. So 4a = 12, gives $a = \frac{12}{4} = 3$.

So the focus *S*, has coordinates (3, 0).

b Line *l*: y = 3x (1)

Parabola *C*: $y^2 = 12x$ (2)

Substituting (1) into (2) gives

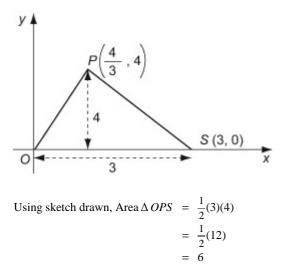
 $(3x)^{2} = 12x$ $9x^{2} = 12x$ $9x^{2} - 12x = 0$ 3x(3x - 4) = 0 $x = 0, \frac{4}{3}$

Substituting these values of x back into equation (1) gives

 $\begin{aligned} x &= 0, y = 3(0) &= 0 \Rightarrow (0,0) \\ x &= \frac{4}{3}, y = 3\left(\frac{4}{3}\right) &= 4 \Rightarrow \left(\frac{4}{3},4\right) \end{aligned}$

As y > 0, the coordinates of *P* are $\left(\frac{4}{3}, 4\right)$.

с



Therefore, Area $\triangle OPS = 6$

Quadratic Equations Exercise F, Question 2

Question:

A parabola *C* has equation $y^2 = 24x$. The point *P* with coordinates (*k*, 6), where *k* is a constant lies on *C*.

a Find the value of *k*.

The point S is the focus of C.

b Find the coordinates of *S*.

The line l passes through S and P and intersects the directrix of C at the point D.

c Show that an equation for *l* is 4x + 3y - 24 = 0.

d Find the area of the triangle *OPD*, where *O* is the origin.

Solution:

a (k, 6) lies on $y^2 = 24x$ gives

$$6^2 = 24k \Rightarrow 36 = 24k \Rightarrow \frac{36}{24} = k \Rightarrow k = \frac{3}{2}.$$

b $y^2 = 24x$. So 4a = 24, gives $a = \frac{24}{4} = 6$.

So the focus S, has coordinates (6, 0).

c The point *P* and *S* have coordinates $P\left(\frac{3}{2}, 6\right)$ and S(6, 0).

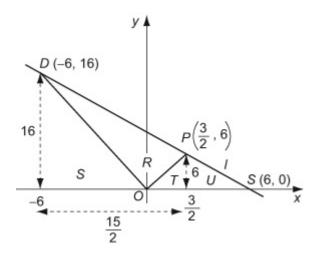
$$m_{l} = m_{PS} = \frac{0-6}{6-\frac{3}{2}} = \frac{-6}{\frac{9}{2}} = -\frac{12}{9} = -\frac{4}{3}$$

l: $y - 0 = -\frac{4}{3}(x - 6)$
l: $3y = -4(x - 6)$
l: $3y = -4x + 24$
l: $4x + 3y - 24 = 0$

Therefore an equation for *l* is 4x + 3y - 24 = 0.

d From (b), as a = 6, an equation of the directrix is x + 6 = 0 or x = -6. Substituting x = -6 into l gives:

4(-6) + 3y - 24 = 03y = 24 + 243y = 48y = 16 Hence the coordinates of D are (-6, 16).



Using the sketch and the regions as labeled you can find the area required. Let Area $\triangle OPD = Area(R)$

Method 1

Area(R) = Area(RST) - Area(S) - Area(T)
=
$$\frac{1}{2}(16+6)\left(\frac{15}{2}\right) - \frac{1}{2}(6)(16) - \frac{1}{2}\left(\frac{3}{2}\right)(6)$$

= $\frac{1}{2}(22)\left(\frac{15}{2}\right) - (3)(16) - \left(\frac{3}{2}\right)(3)$
= $\left(\frac{165}{2}\right) - 48 - \left(\frac{9}{2}\right)$
= 30

Therefore, Area $\triangle OPD = 30$

Method 2

Area(R) = Area(RSTU) - Area(S) - Area(TU)
=
$$\frac{1}{2}(12)(16) - \frac{1}{2}(6)(16) - \frac{1}{2}(6)(6)$$

= 96 - 48 - 18
= 30

Therefore, Area $\triangle OPD = 30$

Quadratic Equations Exercise F, Question 3

Question:

The parabola *C* has parametric equations $x = 12t^2$, y = 24t. The focus to *C* is at the point *S*.

a Find a Cartesian equation of *C*.

The point *P* lies on *C* where y > 0. *P* is 28 units from *S*.

b Find an equation of the directrix of *C*.

c Find the exact coordinates of the point *P*.

d Find the area of the triangle *OSP*, giving your answer in the form $k\sqrt{3}$, where k is an integer.

Solution:

a y = 24t

So $t = \frac{y}{24}$ (1)

 $x = 12t^2$ (2)

Substitute (1) into (2):

$$x = 12 \left(\frac{y}{24}\right)^2$$

So $x = \frac{12y^2}{576}$ simplifies to $x = \frac{y^2}{48}$

Hence, the Cartesian equation of C is $y^2 = 48x$.

b
$$y^2 = 48x$$
. So $4a = 48$, gives $a = \frac{48}{4} = 12$.

Therefore an equation of the directrix of *C* is x + 12 = 0 or x = -12.

c

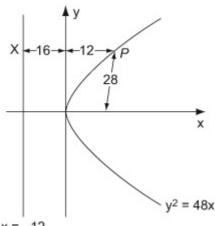
From (b), as a = 12, the coordinates of *S*, the focus to *C* are (12, 0). Hence, drawing a sketch gives,

The (shortest) distance of *P* to the line x = -16 is the distance *XP*.

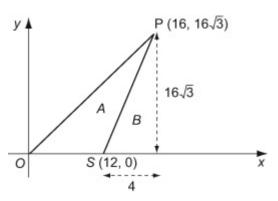
The distance SP = 28.

The focus-directrix property implies that SP = XP = 28.

The directrix has equation x = -12.



x = -12 When x = 16, $y^2 = 48(16) \Rightarrow y^2 = 3(16)^2$ As y > 0, then $y = \sqrt{3(16)^2} = 16\sqrt{3}$. Hence the exact coordinates of P are (16, $16\sqrt{3}$).



Using the sketch and the regions as labeled you can find the area required. Let Area $\triangle OSP = Area(A)$

Area(A) = Area(AB) - Area(B)
=
$$\frac{1}{2}(16)(16\sqrt{3}) - \frac{1}{2}(4)(16\sqrt{3})$$

= $128\sqrt{3} - 32\sqrt{3}$
= $96\sqrt{3}$

Therefore, Area $\triangle OSP = 96\sqrt{3}$ and k = 96.

© Pearson Education Ltd 2008

Therefore the *x*-coordinate of *P* is x = 28 - 12 = 16.

Quadratic Equations Exercise F, Question 4

Question:

The point $(4t^2, 8t)$ lies on the parabola *C* with equation $y^2 = 16x$. The line *l* with equation 4x - 9y + 32 = 0 intersects the curve at the points *P* and *Q*.

a Find the coordinates of P and Q.

b Show that an equation of the normal to C at $(4t^2, 8t)$ is $xt + y = 4t^3 + 8t$.

c Hence, find an equation of the normal to C at P and an equation of the normal to C at Q.

The normal to C at P and the normal to C at Q meet at the point R.

d Find the coordinates of *R* and show that *R* lies on *C*.

e Find the distance *OR*, giving your answer in the form $k\sqrt{97}$, where k is an integer.

Solution:

a Method 1

Line: 4x - 9y + 32 = 0 (1)

Parabola *C*: $y^2 = 16x$ (2)

Multiplying (1) by 4 gives

16x - 36y + 128 = 0 (3)

Substituting (2) into (3) gives

 $y^{2} - 36y + 128 = 0$ (y - 4)(y - 32) = 0 y = 4, 32

When y = 4, $4^2 = 16x \implies x = \frac{16}{16} = 1 \implies (1, 4).$

When y = 32, $32^2 = 16x \implies x = \frac{1024}{16} = 64 \implies (64, 32).$

The coordinates of P and Q are (1, 4) and (64, 32).

Method 2

Line: 4x - 9y + 32 = 0 (1)

Parabola *C*: $x = 4t^2, y = 8t$ (2)

Substituting (2) into (1) gives

$$4(4t^{2}) - 9(8t) + 32 = 0$$

$$16t^{2} - 72t + 32 = 0$$

$$2t^{2} - 9t + 4 = 0$$

$$(2t^{-1})(t^{-1}) = 0$$

$$t = \frac{1}{2}, \quad x = 4(\frac{1}{2})^{2} = 1, \quad y = 8(\frac{1}{2}) = 4 \implies (1, 4).$$
When $t = \frac{1}{4}, \quad x = 4(a)^{2} = 64, \quad y = 8(4) = 32 \implies (64, 32).$
The coordinates of *P* and *Q* are (1, 4) and (64, 32).
b C: $y^{2} = 16x \implies y = \sqrt{16x} = \sqrt{16} \sqrt{\pi} = 4x^{2}$
So $y = 4x^{2}$

$$\frac{dy}{dt} = 4(\frac{1}{2})t^{-\frac{1}{2}} = 2x^{-\frac{1}{2}}$$
So $\frac{dy}{dt} = \frac{2}{\sqrt{x}}$
At $(4t^{2}, 8t), m_{T} = \frac{dw}{dx} = \frac{2}{\sqrt{4t^{2}}} = \frac{2}{2t} = \frac{1}{t}.$
So gradient of normal at $(4t^{2}, 8t)$ is $m_{T} = \frac{1}{t}.$
So gradient of normal at $(4t^{2}, 8t)$ is $m_{T} = \frac{1}{t}.$
So gradient of normal at $(4t^{2}, 8t)$ is $m_{T} = \frac{1}{t}.$
So without loss of generality, from part (a) *P* has coordinates (1, 4) when $t = \frac{1}{2}$ and *Q* has coordinates (64, 32) when $t = 4$.
When $t = \frac{1}{2}$.
N: $x(\frac{1}{2}) + y = 4(\frac{1}{2})^{3} + 8(\frac{1}{2})$
N: $x(\frac{1}{2}) + y = 1 + 8$

N: x + 2y - 9 = 0

When t = 4,

N: $x(4) + y = 4(4)^3 + 8(4)$

N: 4x + y = 256 + 32

N: 4x + y - 288 = 0

d The normals to *C* at *P* and at *Q* are x + 2y - 9 = 0 and 4x + y - 288 = 0

$$N_1: \quad x + 2y - 9 = 0 \quad (1)$$

N₂: 4x + y - 288 = 0 (2)

Multiplying (2) by 2 gives

 $2 \times (2)$: 8x + 2y - 576 = 0 (3)

 $(3) - (1): \quad 7x - 567 = 0$

$$\Rightarrow 7x = 567 \Rightarrow x = \frac{567}{7} = 81$$

$$(2) \implies \qquad y = 288 - 4(81) = 288 - 324 = -36$$

The coordinates of R are (81, -36).

When y = -36, LHS = $y^2 = (-36)^2 = 1296$

When x = 81, RHS = 16x = 16(81) = 1296

As LHS = RHS, R lies on C.

e The coordinates of O and R are (0, 0) and (81, -36).

$$OR = \sqrt{(81-0)^2 + (-36-0)^2} ?$$

= $\sqrt{81^2 + 36^2}$
= $\sqrt{7857}$
= $\sqrt{(81)(97)}$
= $\sqrt{81}\sqrt{97}$
= $9\sqrt{97}$

Hence the exact distance *OR* is $9\sqrt{97}$ and k = 9.

Quadratic Equations Exercise F, Question 5

Question:

The point $P(at^2, 2at)$ lies on the parabola *C* with equation $y^2 = 4ax$, where *a* is a positive constant. The point *Q* lies on the directrix of *C*. The point *Q* also lies on the *x*-axis.

a State the coordinates of the focus of *C* and the coordinates of *Q*.

The tangent to C at P passes through the point Q.

b Find, in terms of *a*, the two sets of possible coordinates of *P*.

Solution:

The focus and directrix of a parabola with equation $y^2 = 4ax$, are (a, 0) and x + a = 0 respectively.

a Hence the coordinates of the focus of C are (a, 0).

As *Q* lies on the *x*-axis then y = 0 and so *Q* has coordinates (-a, 0).

b C: $y^2 = 4ax \Rightarrow y = \sqrt{4ax} = \sqrt{4}\sqrt{a}\sqrt{x} = 2\sqrt{a}x^{\frac{1}{2}}$ So $y = 2\sqrt{a}x^{\frac{1}{2}}$ $\frac{dy}{dx} = 2\sqrt{a}\left(\frac{1}{2}\right)x^{-\frac{1}{2}} = \sqrt{a}x^{-\frac{1}{2}}$ So, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$ At $P(at^2, 2at), m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{at}} = \frac{1}{t}$. **T**: $y - 2at = \frac{1}{t}(x - at^2)$ **T**: $ty - 2at^2 = x - at^2$ **T**: $ty = x - at^2 + 2at^2$ **T**: $ty = x + at^2$ **T** passes through (-a, 0), so substitute x = -a, y = 0 in **T**. $t(0) = -a + at^2 \Rightarrow 0 = -a + at^2 \Rightarrow 0 = -1 + t^2$

So, $t^2 - 1 = 0 \Rightarrow (t - 1)(t + 1) = 0 \Rightarrow t = 1, -1$

When
$$t = 1$$
, $x = a(1)^2 = a$, $y = 2a(1) = 2a \implies (a, 2a)$.

When t = -1, $x = a(-1)^2 = a$, $y = 2a(-1) = -2a \Rightarrow (a, -2a)$.

The possible coordinates of *P* are (a, 2a) or (a, -2a).

Quadratic Equations Exercise F, Question 6

Question:

The point $P(ct, \frac{c}{t}), c > 0, t \neq 0$, lies on the rectangular hyperbola *H* with equation $xy = c^2$.

a Show that the equation of the normal to *H* at *P* is $t^3x - ty = c(t^4 - 1)$.

b Hence, find the equation of the normal *n* to the curve *V* with the equation xy = 36 at the point (12, 3). Give your answer in the form ax + by = d, where *a*, *b* and *d* are integers.

The line n meets V again at the point Q.

c Find the coordinates of *Q*.

Solution:

- **a** *H*: $xy = c^2 \Rightarrow y = c^2 x^{-1}$ $\frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{r^2}$
- At $P(ct, \frac{c}{t}), m_T = \frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{c^2}{c^2 t^2} = -\frac{1}{t^2}$

Gradient of tangent at $P(ct, \frac{c}{t})$ is $m_T = -\frac{1}{t^2}$.

So gradient of normal at $P(ct, \frac{c}{t})$ is $m_N = \frac{-1}{\left(-\frac{1}{t^2}\right)} = t^2$.

- **N:** $y \frac{c}{t} = t^2(x ct)$ (Now multiply both sides by *t*.)
- **N:** $ty c = t^3(x ct)$
- **N:** $ty c = t^3x ct^4$
- **N:** $ct^4 c = t^3x ty$
- **N:** $t^3x ty = ct^4 c$
- **N:** $t^3x ty = c(t^4 1)$

The equation of the normal to *H* at *P* is $t^3x - ty = c(t^4 - 1)$.

b Comparing xy = 36 with $xy = c^2$ gives c = 6 and comparing the point (12, 3) with $\left(ct, \frac{c}{t}\right)$ gives

- $ct = 12 \Rightarrow (6)t = 12 \Rightarrow t = 2$. Therefore,
- *n*: $(2)^3 x (2)y = 6((2)^4 1)$

n: 8x - 2y = 6(15)

n: 8x - 2y = 90

n: 4x - y = 45

An equation for *n* is 4x - y = 45.

c Normal *n*: 4x - y = 45 (1)

Hyperbola V: xy = 36 (2)

Rearranging (2) gives

$$y = \frac{36}{x}$$

Substituting this equation into (1) gives

$$4x - \left(\frac{36}{x}\right) = 45$$

Multiplying both sides by x gives

$$4x^{2} - 36 = 45x$$

$$4x^{2} - 45x - 36 = 0$$

$$(x - 12)(4x + 3) = 0$$

$$x = 12, -\frac{3}{4}$$

It is already known that x = 12. So at Q, $x = -\frac{3}{4}$.

Substituting
$$x = -\frac{3}{4}$$
 into $y = \frac{36}{x}$ gives
 $y = \frac{36}{\left(-\frac{3}{4}\right)} = -36\left(\frac{4}{3}\right) = -48.$

Hence the coordinates of Q are $\left(-\frac{3}{4}, -48\right)$.

Quadratic Equations Exercise F, Question 7

Question:

A rectangular hyperbola *H* has equation xy = 9. The lines l_1 and l_2 are tangents to *H*. The gradients of l_1 and l_2 are both $-\frac{1}{4}$. Find the equations of l_1 and l_2 .

Solution:

H: $xy = 9 \Rightarrow y = 9x^{-1}$

$$\frac{dy}{dx} = -9x^{-2} = -\frac{9}{x^2}$$

Gradients of tangent lines l_1 and l_2 are both $-\frac{1}{4}$ implies

 $-\frac{9}{x^2} = -\frac{1}{4}$ $\Rightarrow x^2 = 36$ $\Rightarrow x = \pm \sqrt{36}$ $\Rightarrow x = \pm 6$ When x = 6, $6y = 9 \implies y = \frac{9}{6} = \frac{3}{2} \implies \left(6, \frac{3}{2}\right)$. When x = -6, $-6y = 9 \Rightarrow y = \frac{9}{-6} = -\frac{3}{2} \Rightarrow \left(-6, -\frac{3}{2}\right)$. At $\left(6, \frac{3}{2}\right)$, $m_T = -\frac{1}{4}$ and **T:** $y - \frac{3}{2} = -\frac{1}{4}(x - 6)$ **T:** 4y - 6 = -1(x - 6)**T:** 4y - 6 = -x + 6**T:** x + 4y - 12 = 0At $(-6, -\frac{3}{2})$, $m_T = -\frac{1}{4}$ and **T:** $y + \frac{3}{2} = -\frac{1}{4}(x+6)$ **T:** 4y + 6 = -1(x + 6)**T:** 4y + 6 = -x - 6**T:** x + 4y + 12 = 0The equations for l_1 and l_2 are x + 4y - 12 = 0 and x + 4y + 12 = 0.

Quadratic Equations Exercise F, Question 8

Question:

The point *P* lies on the rectangular hyperbola $xy = c^2$, where c > 0. The tangent to the rectangular hyperbola at the point $P\left(ct, \frac{c}{t}\right)$, t > 0, cuts the *x*-axis at the point *X* and cuts the *y*-axis at the point *Y*.

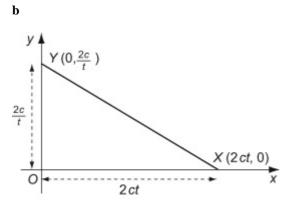
a Find, in terms of c and t, the coordinates of X and Y.

b Given that the area of the triangle OXY is 144, find the exact value of c.

Solution:

a *H*: $xy = c^2 \Rightarrow y = c^2 x^{-1}$ $\frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ At $P(ct, \frac{c}{t}), m_T = \frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{c^2}{c^2 t^2} = -\frac{1}{t^2}$ **T**: $y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$ (Now multiply both sides by t^2 .) **T**: $t^2y - ct = -(x - ct)$ **T**: $t^2y - ct = -x + ct$ **T**: $x + t^2y = 2ct$ **T** cuts x-axis $\Rightarrow y = 0 \Rightarrow x + t^2(0) = 2ct \Rightarrow x = 2ct$ **T** cuts y-axis $\Rightarrow x = 0 \Rightarrow 0 + t^2y = 2ct \Rightarrow y = \frac{2ct}{t^2} = \frac{2c}{t}$

So the coordinates are X(2ct, 0) and $Y\left(0, \frac{2c}{t}\right)$.



Using the sketch, are $\triangle OXY = \frac{1}{2}(2ct)\left(\frac{2c}{t}\right) = \frac{4c^2t}{2t} = 2c^2$

As area $\triangle OXY = 144$, then $2c^2 = 144 \Rightarrow c^2 = 72$

As c > 0, $c = \sqrt{72} = \sqrt{36}\sqrt{2} = 6\sqrt{2}$.

Hence the exact value of c is $6\sqrt{2}$.

Quadratic Equations Exercise F, Question 9

Question:

The points $P(4at^2, 4at)$ and $Q(16at^2, 8at)$ lie on the parabola C with equation $y^2 = 4ax$, where a is a positive constant.

a Show that an equation of the tangent to *C* at *P* is $2ty = x + 4at^2$.

b Hence, write down the equation of the tangent to C at Q.

The tangent to C at P meets the tangent to C at Q at the point R.

c Find, in terms of a and t, the coordinates of R.

Solution:

a *C*:
$$y^2 = 4ax \Rightarrow y = \pm \sqrt{4ax} = \sqrt{4} \sqrt{a} \sqrt{x} = 2\sqrt{a}x^{\frac{1}{2}}$$

So $y = 2\sqrt{a}x^{\frac{1}{2}}$
 $\frac{dy}{dx} = 2\sqrt{a}(\frac{1}{2})x^{-\frac{1}{2}} = \sqrt{a}x^{-\frac{1}{2}}$
So, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{x}}$
At $P(4at^2, 4at), m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{4at^2}} = \frac{\sqrt{a}}{2\sqrt{a}t} = \frac{1}{2t}$.
T: $y - 4at = \frac{1}{2t}(x - 4at^2)$
T: $2ty - 8at^2 = x - 4at^2$
T: $2ty = x - 4at^2 + 8at^2$
T: $2ty = x + 4at^2$
The equation of the tangent to *C* at $P(4at^2, 4at)$ is $2ty = x + 4at^2$.
b *P* has mapped onto *Q* by replacing *t* by $2t$, i.e. $t \to 2t$
So, $P(4at^2, 4at) \to Q(16at^2, 8at) = Q(4a(2t)^2, 4a(2t))$
At *Q*, **T** becomes $2(2t)y = x + 4a(2t)^2$
T: $2(2t)y = x + 4a(2t)^2$

T: $4ty = x + 4a(4t^2)$

T: $4ty = x + 16at^2$

The equation of the tangent to *C* at $Q(16at^2, 8at)$ is $4ty = x + 16at^2$.

c T_p:
$$2ty = x + 4at^2$$
 (1)
T_Q: $4ty = x + 16at^2$ (2)
(2) - (1) gives
 $2ty = 12at^2$
Hence, $y = \frac{12at^2}{2t} = 6at$.
Substituting this into (1) gives,
 $2t(6at) = x + 4at^2$
 $12at^2 = x + 4at^2$
 $12at^2 - 4at^2 = x$

Hence, $x = 8at^2$.

The coordinates of *R* are $(8at^2, 6at)$.

Quadratic Equations Exercise F, Question 10

Question:

A rectangular hyperbola *H* has Cartesian equation $xy = c^2$, c > 0. The point $\left(ct, \frac{c}{t}\right)$, where $t \neq 0$, t > 0 is a general point on *H*.

a Show that an equation an equation of the tangent to H at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct$.

The point P lies on H. The tangent to H at P cuts the x-axis at the point X with coordinates (2a, 0), where a is a constant.

b Use the answer to part **a** to show that *P* has coordinates $\left(a, \frac{c^2}{a}\right)$.

The point Q, which lies on H, has x-coordinate 2a.

c Find the *y*-coordinate of *Q*.

d Hence, find the equation of the line *OQ*, where *O* is the origin.

The lines OQ and XP meet at point R.

e Find, in terms of *a*, the *x*-coordinate of *R*.

Given that the line OQ is perpendicular to the line XP,

f Show that $c^2 = 2a^2$,

g find, in terms of *a*, the *y*-coordinate of *R*.

Solution:

a *H*: $xy = c^2 \Rightarrow y = c^2 x^{-1}$ $\frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ At $\left(ct, \frac{c}{t}\right), m_T = \frac{dy}{dx} = -\frac{c^2}{(ct)^2} = -\frac{c^2}{c^2 t^2} = -\frac{1}{t^2}$ **T**: $y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$ (Now multiply both sides by t^2 .) **T**: $t^2y - ct = -(x - ct)$ **T**: $t^2y - ct = -x + ct$ **T**: $x + t^2y = 2ct$ An equation of a tangent to *H* at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct$.

b T passes through X(2a, 0), so substitute x = 2a, y = 0 into **T**.

$$(2a) + t^{2}(0) = 2ct \Rightarrow 2a = 2ct \Rightarrow \frac{2a}{2c} = t \Rightarrow t = \frac{a}{c}$$

Substitute $t = \frac{a}{c} \operatorname{into}\left(ct, \frac{c}{t}\right)$ gives

$$P\left(c\left(\frac{a}{c}\right), \frac{c}{\left(\frac{a}{c}\right)}\right) = P\left(a, \frac{c^2}{a}\right).$$

Hence *P* has coordinates $P\left(a, \frac{c^2}{a}\right)$.

c Substituting x = 2a into the curve *H* gives

$$(2a)y = c^2 \Longrightarrow y = \frac{c^2}{2a}.$$

The *y*-coordinate of *Q* is $y = \frac{c^2}{2a}$.

d The coordinates of *O* and *Q* are (0, 0) and $\left(2a, \frac{c^2}{2a}\right)$.

$$m_{OQ} = \frac{\frac{c^2}{2a} - 0}{2a - 0} = \frac{c^2}{2a(2a)} = \frac{c^2}{4a^2}$$
$$OQ: \ y - 0 = \frac{c^2}{4a^2}(x - 0)$$
$$OQ: \ y = \frac{c^2x}{4a^2}.$$
(1)

The equation of OQ is $y = \frac{c^2 x}{4a^2}$.

e The coordinates of *X* and *P* are (2a, 0) and $\left(a, \frac{c^2}{a}\right)$.

$$m_{XP} = \frac{\frac{c^2}{a} - 0}{a - 2a} = \frac{\frac{c^2}{a}}{-a} = -\frac{c^2}{a^2}$$
$$XP: \ y - 0 = -\frac{c^2}{a^2}(x - 2a)$$
$$XP: \ y = -\frac{c^2}{a^2}(x - 2a) \quad (2)$$

Substituting (1) into (2) gives,

$$\frac{c^2 x}{4a^2} = -\frac{c^2}{a^2}(x - 2a)$$

Cancelling $\frac{c^2}{a^2}$ gives,

$$\frac{x}{4} = -(x - 2a)$$
$$\frac{x}{4} = -x + 2a$$
$$\frac{5x}{4} = 2a$$
$$x = \frac{4(2a)}{5} = \frac{8a}{5}$$

The *x*-coordinate of *R* is $\frac{8a}{5}$.

f From earlier parts, $m_{OQ} = \frac{c^2}{4a^2}$ and $m_{XP} = -\frac{c^2}{a^2}$

OP is perpendicular to $XP \Rightarrow m_{OQ} \times m_{XP} = -1$, gives

$$m_{OQ} \times m_{XP} = \left(\frac{c^2}{4a^2}\right) \left(-\frac{c^2}{a^2}\right) = \frac{-c^4}{4a^4} = -1$$
$$-c^4 = -4a^4 \Rightarrow c^4 = 4a^4 \Rightarrow \left(c^2\right)^2 = 4a^4$$
$$c^2 = \sqrt{4a^4} = \sqrt{4}\sqrt{a^4} = 2a^2.$$

Hence, $c^2 = 2a^2$, as required.

g At
$$R, x = \frac{8a}{5}$$
. Substituting $x = \frac{8a}{5}$ into $y = \frac{c^2x}{4a^2}$ gives,
$$y = \frac{c^2}{4a^2} \left(\frac{8a}{5}\right) = \frac{8ac^2}{20a^2}$$

and using the $c^2 = 2a^2$ gives,

$$y = \frac{8a(2a^2)}{20a^2} = \frac{16a^3}{20a^2} = \frac{4a}{5}.$$

The y-coordinate of *R* is $\frac{4a}{5}$.